期刊论文详细信息
Virology Journal
The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system
Bruce S Seal1  Brian B Oakley1  J Michael Day2  Laszlo Zsak2 
[1] Poultry Microbiological Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA 30605 USA;Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605 USA
关键词: metagenomics;    enteric;    turkey;    microviridae;    microphage;   
Others  :  1156481
DOI  :  10.1186/1743-422X-8-331
 received in 2011-03-25, accepted in 2011-06-29,  发布年份 2011
PDF
【 摘 要 】

The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system.

【 授权许可】

   
2011 Zsak et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407130855519.pdf 424KB PDF download
Figure 4. 50KB Image download
Figure 3. 46KB Image download
Figure 2. 81KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Handelsman J: Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004, 68:669-685.
  • [2]Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F: Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 2002, 99:14250-14255.
  • [3]Edwards RA, Rohwer F: Viral metagenomics. Nat Rev Microbiol 2005, 3:504-510.
  • [4]Kristensen DM, Mushegian AR, Dolja VV, Koonin EV: New dimensions of the virus world discovered through metagenomics. Trends Microbiol 2010, 18:11-19.
  • [5]Schoenfeld T, Liles M, Wommack KE, Polson SW, Godiska R, Mead D: Functional viral metagenomics and the next generation of molecular tools. Trends Microbiol 2010, 18:20-29.
  • [6]Fischetti VA: Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 2008, 11:393-400.
  • [7]Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, McCarty J, Srikumar R, Williams D, Wu JJ, Gros P, Pelletier J, DuBow M: Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 2004, 22:185-191.
  • [8]Merril CR, Scholl D, Adhya SL: The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2003, 2:489-497.
  • [9]Suttle CA: Marine viruses--major players in the global ecosystem. Nat Rev Microbiol 2007, 5:801-812.
  • [10]Ackermann HW: Bacteriophage observations and evolution. Res Microbiol 2003, 154:245-251.
  • [11]Brüssow H, Canchaya C, Hardt WD: Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004, 68:560-602.
  • [12]Boyd EF, Brüssow H: Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002, 10:521-529.
  • [13]Chen J, Novick RP: Phage-mediated intergeneric transfer of toxin genes. Science 2009, 323:139-141.
  • [14]Wagner PL, Waldor MK: Bacteriophage control of bacterial virulence. Infect Immun 2002, 70:3985-3993.
  • [15]Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H: Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003, 6:417-424.
  • [16]Paul JH, Sullivan MB, Segall AM, Rohwer F: Marine phage genomics. Comp Biochem Physiol 2002, 133:463-476.
  • [17]Brüssow H, Desiere F: Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 2001, 39:213-222.
  • [18]Sturino JM, Klaenhammer TR: Bacteriophage defense systems and strategies for lactic acid bacteria. Adv Appl Microbiol 2004, 56:331-378.
  • [19]Barnes HJ, Guy JS, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE: Poult enteritis mortality syndrome. In Diseases of Poultry. 11th edition. Edited by Saif Y. Iowa State Press; 2003:1171-1180.
  • [20]Day JM, Ballard LL, Duke MV, Scheffler BE, Zsak L: Metagenomic analysis of the turkey gut RNA virus community. Virol J 2010, 7:313. BioMed Central Full Text
  • [21]Day JM, Zsak L: Determination and analysis of the full-length chicken parvovirus genome. Virology 2010, 399:59-64.
  • [22]Zsak L, Strother KO, Kisary J: Partial genome sequence analysis of parvoviruses associated with enteric disease in poultry. Avian Pathol 2008, 37:435-441.
  • [23]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [24]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [25]Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Liu H, Furlan M, Wegley L, Chau B, Ruan Y, Hall D, Angly FE, Edwards RA, Li L, Thurber RV, Reid RP, Siefert J, Souza V, Valentine DL, Swan BK, Breitbart M, Rohwer F: Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 2008, 452:340-343.
  • [26]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [27]Markov: Markov chain-based viral gene prediction. [http:/ / linux1.softberry.com/ berry.phtml?topic=virus&group=progr ams&subgroup=gfindv] webcite
  • [28]Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH: CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 2009, 37:205-210.
  • [29]Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC: The integrated microbial genomes (IMG) system. Nucleic Acids Res 2006, 34:344-348.
  • [30]Richter M, Rossello-Mora R: Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009, 106:19126-19131.
  • [31]Team RDC: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [http://www.R-project.org] webcite 2008. ISBN 3-900051-07-0
  • [32]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
  • [33]Rokyta DR, Abdo Z, Wichman HA: The genetics of adaptation for eight microvirid bacteriophages. J Mol Evol 2009, 69:229-239.
  • [34]Rokyta DR, Burch CL, Caudle SB, Wichman HA: Horizontal gene transfer and the evolution of microvirid coliphage genomes. J Bacteriol 2006, 188:1134-1142.
  • [35]Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN: Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum. Virus Genes 2004, 28:207-214.
  • [36]Brentlinger KL, Hafenstein S, Novak CR, Fane BA, Borgon R, McKenna R, Agbandje-McKenna M: Microviridae, a family divided: isolation, characterization, and genome sequence of φMH2K, a bacteriophage of the obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus. J Bacteriol 2002, 184:1089-1094.
  • [37]McKenna R, Bowman BR, Ilag LL, Rossmann MG, Fane BA: Atomic structure of the degraded procapsid particle of the bacteriophage G4: induced structural changes in the presence of calcium ions and functional implications. J Mol Biol 1996, 256:736-750.
  • [38]Storey CC, Lusher M, Richmond SJ: Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 1989, 70:3381-3390.
  • [39]Renaudin J, Pascarel MC, Bove JM: Spiroplasma virus 4: nucleotide sequence of the viral DNA, regulatory signals, and proposed genome organization. J Bacteriol 1987, 169:4950-4961.
  • [40]Sait M, Livingstone M, Graham R, Inglis NF, Wheelhouse N, Longbottom D: Identification, sequencing and molecular analysis of Chp4, a novel chlamydiaphage of Chlamydophila abortus belonging to the family Microviridae. J Gen Virol 2011, 92:1733-1737.
  • [41]Hsia RC, Ting LM, Bavoil PM: Microvirus of Chlamydia psittaci strain guinea pig inclusion conjunctivitis: isolation and molecular characterization. Microbiology 2000, 46:1651-1660.
  • [42]Liu BL, Everson JS, Fane B, Giannikopoulou P, Vretou E, Lambden PR, Clarke IN: Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 2000, 74:3464-3469.
  • [43]Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Umayam L, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 2000, 28:1397-1406.
  • [44]Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS, McKenna R: Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 1998, 6:135-145.
  文献评价指标  
  下载次数:78次 浏览次数:11次