期刊论文详细信息
Virology Journal
Crystal structure of the lytic CHAPK domain of the endolysin LysK from Staphylococcus aureus bacteriophage K
Mark J van Raaij3  Aidan Coffey2  Carmela Garcia-Doval1  Ruth Keary2  Marta Sanz-Gaitero3 
[1] Current address: Department of Biochemistry, University of Zurich, Zurich, Switzerland;Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB–CSIC), Calle Darwin 3, E-28049 Madrid, Spain
关键词: Zinc;    Staphylococcus;    Protease;    Peptidoglycan;    Endolysin;    Crystallography;    Calcium;    Bacteriophage;   
Others  :  1148770
DOI  :  10.1186/1743-422X-11-133
 received in 2014-04-28, accepted in 2014-07-04,  发布年份 2014
PDF
【 摘 要 】

Background

Bacteriophages encode endolysins to lyse their host cell and allow escape of their progeny. Endolysins are also active against Gram-positive bacteria when applied from the outside and are thus attractive anti-bacterial agents. LysK, an endolysin from staphylococcal phage K, contains an N-terminal cysteine-histidine dependent amido-hydrolase/peptidase domain (CHAPK), a central amidase domain and a C-terminal SH3b cell wall-binding domain. CHAPK cleaves bacterial peptidoglycan between the tetra-peptide stem and the penta-glycine bridge.

Methods

The CHAPK domain of LysK was crystallized and high-resolution diffraction data was collected both from a native protein crystal and a methylmercury chloride derivatized crystal. The anomalous signal contained in the derivative data allowed the location of heavy atom sites and phase determination. The resulting structures were completed, refined and analyzed. The presence of calcium and zinc ions in the structure was confirmed by X-ray fluorescence emission spectroscopy. Zymogram analysis was performed on the enzyme and selected site-directed mutants.

Results

The structure of CHAPK revealed a papain-like topology with a hydrophobic cleft, where the catalytic triad is located. Ordered buffer molecules present in this groove may mimic the peptidoglycan substrate. When compared to previously solved CHAP domains, CHAPK contains an additional lobe in its N-terminal domain, with a structural calcium ion, coordinated by residues Asp45, Asp47, Tyr49, His51 and Asp56. The presence of a zinc ion in the active site was also apparent, coordinated by the catalytic residue Cys54 and a possible substrate analogue. Site-directed mutagenesis was used to demonstrate that residues involved in calcium binding and of the proposed active site were important for enzyme activity.

Conclusions

The high-resolution structure of the CHAPK domain of LysK was determined, suggesting the location of the active site, the substrate-binding groove and revealing the presence of a structurally important calcium ion. A zinc ion was found more loosely bound. Based on the structure, we propose a possible reaction mechanism. Future studies will be aimed at co-crystallizing CHAPK with substrate analogues and elucidating its role in the complete LysK protein. This, in turn, may lead to the design of site-directed mutants with altered activity or substrate specificity.

【 授权许可】

   
2014 Sanz-Gaitero et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404202520125.pdf 1958KB PDF download
Figure 5. 95KB Image download
Figure 4. 45KB Image download
Figure 3. 110KB Image download
Figure 2. 74KB Image download
Figure 1. 160KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Rees PJ, Fry BA: The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. J Gen Virol 1981, 53(Pt 2):293-307.
  • [2]O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP: Genome of staphylococcal phage K: a new lineage of Myoviridae infecting Gram-positive bacteria with a low G + C content. J Bacteriol 2004, 186(9):2862-2871.
  • [3]Gill JJ: Revised genome sequence of staphylococcus aureus bacteriophage K. Genome Announcements 2014, 2(1):e01173.
  • [4]Loessner MJ: Bacteriophage endolysins - current state of research and applications. Curr Opin Microbiol 2005, 8(4):480-487.
  • [5]Ralston DJ, McIvor M: Lysis-from-without of Staphylococcus aureus strains by combinations of specific phages and phage-induced lytic enzymes. J Bacteriol 1964, 88:676-681.
  • [6]Loeffler JM, Nelson D, Fischetti VA: Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294(5549):2170-2172.
  • [7]O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP: The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 2005, 187(20):7161-7164.
  • [8]Becker SC, Dong S, Baker JR, Foster-Frey J, Protchard DF, Donovan DM: LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 2009, 294(1):52-60.
  • [9]Horgan M, O’Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, Ross RP, McAuliffe O: Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 2009, 75(3):872-874.
  • [10]Fenton M, Casey PG, Hill C, Gahan CG, Ross RP, McAuliffe O, O’Mahony J, Maher F, Coffey A: The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. Bioeng Bugs 2010, 1(6):404-407.
  • [11]Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A: Bacteriophage-derived peptidase CHAPK eliminates and prevents staphylococcal biofilms. Internat J Microbiol 2013, 2013:625341.
  • [12]Sanz-Gaitero M, Keary R, Garcia-Doval C, Coffey A, van Raaij MJ: Crystallization of the CHAP domain of the endolysin from Staphylococcus aureus bacteriophage K. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013, 69(Pt 12):393-1396.
  • [13]Fenton M, Cooney JC, Ross RP, Sleator RD, McAuliffe O, O’Mahony J, Coffey A: In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK. Bacteriophage 2011, 1(4):198-206.
  • [14]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucl Acids Res 2012, 40:D290-D301.
  • [15]McGowan S, Buckle AM, Mitchell MS, Hoopes JT, Gallagher DT, Heselpoth RD, Shen Y, Reboul CF, Law RHP, Fischetti VA, Whisstock JC, Nelson DC: X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci U S A 2012, 109(31):12752-12757.
  • [16]Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Chiu M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, et al.: Structure of the c-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-c-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010, 66(Pt 10):1354-1364.
  • [17]Rossi P, Aramini JMR, Xiao R, Chen CX, Nwosu C, Owens LA, Maglaqui M, Nair R, Fischer M, Acton TB, Honig B, Rost B, Montelione GT: Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen staphylococcus saprophyticus. Proteins 2009, 74(2):515-519.
  • [18]Jones KW, Gordon BM, Hanson AL, Kwiatek WL, Pounds JG: X-ray fluorescence with synchrotron radiation. Ultramicroscopy 1988, 24(2–3):313-328.
  • [19]Harding MM: Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr Sect D Biol Crystallogr 2006, 62(Pt 6):678-682.
  • [20]Filatova LY, Becker SC, Donovan DM, Gladilin AK, Klyachko NL: LysK, the enzyme lysing staphylococcus aureus cells: specific kinetic features and approaches towards stabilization. Biochimie 2010, 92:507-513.
  • [21]Fenton M, Ross RP, McAuliffe O, O’Mahony J, Coffey A: Characterization of the staphylococcal bacteriophage lysin CHAPK. J Appl Microbiol 2011, 111:1025-1035.
  • [22]Aramini JM, Rossi P, Huang YJ, Zhao L, Jiang M, Maglaqui M, Xiao R, Locke J, Nair R, Rost B, Acton TB, Inouye M, Montelione GT: Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Biochemistry 2008, 47(37):9715-9717.
  • [23]Shokhen M, Khazanov N, Albeck A: The mechanism of papain inhibition by peptidyl aldehydes. Proteins 2011, 79:975-985.
  • [24]Brömme D: Papain-like cysteine proteases. Curr Protoc Protein Sci 2001, 21:21.2.1-21.2.14.
  • [25]Lau EY, Bruice TC: Consequences of breaking the Asp-His hydrogen bond of the catalytic triad: effects on the structure and dynamics of the serine esterase cutinase. Biophys J 1999, 77(1):85-98.
  • [26]Menard R, Storer AC: Oxyanion hole interactions in serine and cysteine proteases. Biol Chem Hoppe Seyler 1992, 373(7):393-400.
  • [27]Gu J, Feng Y, Feng X, Sun C, Lei L, Ding W, Niu F, Jiao L, Yang M, Li Y, Liu X, Song J, Cui Z, Han D, Du C, Yang Y, Ouyang S, Liu ZJ, Han W: Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLOS Path 2014, 10(5):e1004109.
  • [28]Gu J, Liu X, Lu R, Li Y, Song J, Lei L, Sun C, Feng X, Du C, Yu H, Yang Y, Han W: Complete genome sequence of staphylococcus aureus bacteriophage GH15. J Virol 2012, 86(16):8914-8915.
  • [29]Langer G, Cohen SX, Lamzin VS, Perrakis A: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 2008, 3(7):1171-1179.
  • [30]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126-2132.
  • [31]Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA: Refmac5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr 2011, 67(Pt 4):355-367.
  • [32]Brünger A: Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355(6359):472-475.
  • [33]Leonard GA, Solé VA, Beteva A, Gabadinho J, Guijarro M, McCarthy J, Marrocchelli D, Nurizzo D, McSweeney S, Mueller-Dieckmann S: Online collection and analysis of X-ray fluorescence spectra on the macromolecular crystallography beamlines of the ESRF. J Appl Crystallogr 2009, 42:333-335.
  • [34]Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 2010, 66(Pt 1):12-21.
  • [35]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372(3):774-797.
  • [36]Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS: Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D Biol Crystallogr 2011, 67(Pt 4):235-242.
  • [37]Holm L, Rosenström P: Dali server: conservation mapping in 3D. Nucleic Acids Res 2010, 38(Web Server issue):W545-W549.
  • [38]Armon A, Graur AD, Ben-Tal N: ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Bioinformatics 2003, 19(1):163-164.
  • [39]Rostkowski M, Olsson MHM, Søndergaard CR, Jensen JH: Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 2011, 11:6.
  • [40]Bond CS: Topdraw: a sketchpad for protein structure topology cartoons. Bioinformatics 2003, 19(2):311-312.
  • [41]Keary R, McAuliffe O, Ross RP, Hill C, O’Mahony J, Coffey A: Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage 2014, 4(1):e28451.
  文献评价指标  
  下载次数:45次 浏览次数:19次