期刊论文详细信息
Particle and Fibre Toxicology
Molecular detection of tick-borne rickettsial and protozoan pathogens in domestic dogs from Turkey
Nazir Dumanlı1  Sami Şimsek1  Akın Kırbas4  Armagan Erdem Utuk5  İbrahim Balkaya2  Neval Duygu Sayin Ipek6  Kürşat Altay3  Sezayi Özübek1  Munir Aktas1 
[1] Department of Parasitology, College of Veterinary Medicine, Firat University, Elazig, 23119, Turkey;Department of Parasitology, College of Veterinary Medicine, Atatürk University, Erzurum, Turkey;Department of Parasitology, College of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey;Department of Internal Medicine, College of Veterinary Medicine, Atatürk University, Erzurum, Turkey;Department of Parasitology, Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey;Department of Parasitology, College of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
关键词: RLB;    Theileria annulata;    Ehrlichia canis;    Anaplasma platys;    Babesia canis canis;    Dog;   
Others  :  1146561
DOI  :  10.1186/s13071-015-0763-z
 received in 2014-11-17, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

Canine tick-borne parasites have emerged in recent years, showing a wider geographic distribution and increased global prevalence. In addition to their veterinary importance, domestic dogs play an important role in the transmission cycles of some agents by acting as reservoirs and sentinels. This study investigated Babesia, Theileria, Anaplasma, and Ehrlichia species in asymptomatic dogs in ten provinces of Turkey.

Methods

DNA obtained from blood samples collected from 757 domestic dogs (243 stray, 351 shelter, 163 pet) of both sexes and various ages were evaluated using PCR and reverse line blotting (RLB) assays.

Results

Of the 757 dogs tested, 41 (5.4%) were found to be infected with one or more parasites. Ehrlichia canis (37/757, 4.9%) was the most common canine tick-borne pathogen, followed by Anaplasma platys (4/757, 0.5%). Babesia canis and Theileria annulata were each detected in 1 (0.13%) sample. Combined infection of E. canis and A. platys was detected in 2 (0.3%) samples. The prevalence of tick-borne pathogens was higher in adult dogs (6.8%) than in those under one year old (3.1%). Difference in infection rate of male and female dogs was not significant. Pet dogs had a lower prevalence of infection (1.2%) compared to stray (7.4%) and shelter dogs (6%) although the difference between stray and shelter dogs was not significant.

Conclusions

Babesia canis, T. annulata, A. platys, and E. canis species were identified at the molecular level in dogs in several provinces of Turkey, with E. canis being the most common species among tick-borne pathogens. Detailed studies should be conducted regarding the existence and prevalence of B. canis and Dermacentor reticulatus in eastern Turkey.

【 授权许可】

   
2015 Aktas et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403132259688.pdf 610KB PDF download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Chomel B. Tick-borne infections in dogs-An emerging infectious threat. Vet Parasitol. 2011; 179:294-301.
  • [2]Solano-Gallego L, Baneth G. Babesiosis in dogs and cats-Expanding parasitological and clinical spectra. Vet Parasitol. 2011; 181:48-60.
  • [3]Matijatko V, Torti M, Schetters TP. Canine babesiosis in Europe: How many diseases? Trends Parasitol. 2012; 28:99-105.
  • [4]Berzina I, Capligina V, Baumanis V, Ranka R, Cirule D, Matise I. Autochthonous canine babesiosis caused by Babesia canis canis in Latvia. Vet Parasitol. 2013; 196:515-8.
  • [5]Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y et al.. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis. 2013; 7:2108.
  • [6]Schaarschmidt D, Gilli U, Gottstein B, Marreros N, Kuhnert P, Daeppen JA et al.. Questing Dermacentor reticulatus harbouring Babesia canis DNA associated with outbreaks of canine babesiosis in the Swiss Midlands. Ticks Tick-Borne Dis. 2013; 4:334-40.
  • [7]Little SE. Ehrlichiosis and anaplasmosis in Dogs and cats. Vet Clin N Am Small Anim Pract. 2010; 40:1121-40.
  • [8]De Tommasi AS, Otranto D, Dantas-Torres F, Capelli G, Breitschwerdt EB, De Caprariis D. Are vector-borne pathogen co-infections complicating the clinical presentation in dogs? Parasitol Vectors. 2013; 6:97. BioMed Central Full Text
  • [9]Harrus S, Waner T, Bjöerdorff A, Shaw S. Ehrlichiosis and anaplasmosis. In: Artrhropod-borne infectious diseases of the dogs and cats. Shaw ES, Day MJ, editors. Manson Publishing Ltd, London NW11 7DL, UK; 2005: p.120-133.
  • [10]Irwin PJ. Canine babesiosis: from molecular taxonomy to control. Parasitol Vectors. 2009; 2:S4. BioMed Central Full Text
  • [11]Matjila PT, Leisewitz AL, Jongejan F, Penzhorn BL. Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa. Vet Parasitol. 2008; 155:152-7.
  • [12]Rani PAMA, Irwin PJ, Coleman GT, Gatne M, Traub RJ. A survey of canine tick-borne diseases in India. Parasitol Vectors. 2011; 4:141. BioMed Central Full Text
  • [13]Laummaunwai P, Sriraj P, Aukkanimart R, Boonmars T, Boonjaraspinyo S, Sangmaneedet S et al.. Molecular detection and treatment of tick-borne pathogens in domestic dogs in Khon Kaen, northeastern Thailand. Southeast Asian J Trop Med Public Health. 2014; 45:1157-66.
  • [14]Otranto D, Testini G, Dantas-Torres F, Latrofa MS, Diniz PP, De Caprariis D et al.. Diagnosis of canine vector-borne diseases in young dogs: a longitudinal study. J Clin Microbiol. 2010; 48:3316-24.
  • [15]Schouls LM, Ingrid Van De P, Rijpkema SGT, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus Ticks. J Clin Microbiol. 1999; 37:2215-22.
  • [16]Altay K, Dumanli N. Survey of Theileria parasites of sheep in eastern Turkey using polymerase chain reaction. Small Rum Res. 2005; 60:289-93.
  • [17]Aktas M, Altay K, Dumanli N. Determination of prevalence and risk factors for infection with Babesia ovis in small ruminants from Turkey by polymerase chain reaction. Parasitol Res. 2007; 100:797-802.
  • [18]Aktas M, Altay K, Dumanli N. Molecular detection and identification of Anaplasma and Ehrlichia species in cattle from Turkey. Ticks Tick-Borne Dis. 2011; 2:62-5.
  • [19]Altay K, Aktas M, Dumanli N. Detection of Babesia ovis by PCR in Rhipicephalus bursa collected from naturally infested sheep and goats. Res Vet Sci. 2008; 85:116-9.
  • [20]Altay K, Aktas M, Dumanli N, Aydin MF. Evaluation of a PCR and comparison with RLB for detection and differentiation of Theileria sp. MK and other Theileria and Babesia species of small ruminants. Parasitol Res. 2008; 103:319-23.
  • [21]Altay K, Dumanli N, Aktas M. A study on ovine tick-borne hemoprotozoan parasites (Theileria and Babesia) in the East Black Sea Region of Turkey. Parasitol Res. 2012; 111:149-53.
  • [22]Karagenc T, Hosgor M, Bilgic HB, Pasa S, Kirli G, Eren H. The determination of the prevalence of E. canis, A. phagocytophila, A. platys with nested PCR in dogs in the Aegean Region. 14th National Parasitology Congress, İzmir, Turkey; 2005.
  • [23]Ulutaş B, Bayramlı G, Ulutaş PA, Karagenç T. First case of Anaplasma (Ehrlichia) platys infection in a dog in Turkey. Turk J Vet Anim Sci. 2007; 31:279-81.
  • [24]Aysul N, Ural K, Ulutaş B, Eren H, Karagenc T. First detection and molecular identification of Babesia gibsoni in two dogs from the Aydın Province of Turkey. Turk J Vet Anim Sci. 2013; 37:226-9.
  • [25]Gökçe E, Kırmızıgül AH, Taşcı GT, Uzlu E, Gündüz N, Vatansever Z. The first time clinical and parasitological determination of Babesia canis canis in Dogs in Turkey. Kafkas Univ Vet Fac J. 2013; 19:717-20.
  • [26]Aktas M. A survey of ixodid tick species and molecular identification of tick-borne pathogens. Vet Parasitol. 2014; 200:276-83.
  • [27]Alper HC, Rotherham ID. A review of the forest vegatation of Turkey: Its status past and present and its future conservation. Biol Environ Proc R Irısh Acad. 2006; 106B:343-54.
  • [28]Gubbels JM, De Vos AP, Van der Weide M, Viseras J, Schouls LM, De Vries E et al.. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol. 1999; 37:1782-9.
  • [29]Aydin MF, Aktas M, Dumanli N. Molecular identification of Theileria and Babesia in sheep and goats in the Black Sea Region in Turkey. Parasitol Res. 2013; 112:2817-24.
  • [30]Aktas M, Ozübek S, Ipek DN. Molecular investigations of Hepatozoon species in dogs and developmental stages of Rhipicephalus sanguineus. Parasitol Res. 2013; 112:2381-5.
  • [31]Sainz A, Roura X, Miró G, Estrada-Peña A, Kohn B, Harrus S et al.. Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasitol Vectors. 2015; 8:75. BioMed Central Full Text
  • [32]De Tommasi AS, Otranto D, Furlanello T, Tasca S, Cantacessi C, Breitschwerdt EB et al.. Evaluation of blood and bone marrow in selected canine vector-borne diseases. Parasitol Vectors. 2014; 7:534. BioMed Central Full Text
  • [33]Paşa S, Kıral F, Karagenc T, Atasoy A, Seyrek K. Description of dogs naturally infected with Hepatozoon canis in the Aegean region of Turkey. Turk J Vet Anim Sci. 2009; 33:289-95.
  • [34]Aktas M, Sevgili M, Dumanli N, Karaer Z, Cakmak A. Elazig, Malatya ve Tunceli illerinde tropikal theileriosisin seroprevalans. Turk J Vet Anim Sci. 2001; 25:359-63. (Turkish)
  • [35]Aktas M, Dumanli N, Cetinkaya B, Cakmak A. Field evaluation of PCR in detecting Theileria annulata infection in cattle in the east of Turkey. Vet Rec. 2002; 150:548-9.
  • [36]Criado-Fornelio A, Martinez-Marcos A, Buling-Sarana A, Barba-Carretero JC. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part I. Epizootiological aspects. Vet Parasitol. 2003; 113:189-201.
  • [37]Criado-Fornelio A, Martinez-Marcos A, Buling-Sarana A, Barba-Carretero JC. Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Part II. Phylogenetic analysis and evolutionary history. Vet Parasitol. 2003; 114:173-94.
  • [38]Nagore D, Garcia-Sanmartin J, Garcia-Pérez AL, Juste RA, Hurtado A. Detection and identification of equine Theileria and Babesia species by reverse line blotting: epidemiological survey and phylogenetic analysis. Vet Parasitol. 2004; 23:41-54.
  • [39]Criado A, Martinez J, Buling A, Barba JC, Merino S, Jefferies R et al.. New data on epizootiology and genetics of piroplasms based on sequences of small ribosomal subunit and cytochrome b genes. Vet Parasitol. 2006; 142:238-47.
  • [40]Adamu M, Troskie M, Oshadu DO, Malatji DP, Penzhorn BL, Matjila PT. Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria. Parasite. Parasitol Vectors. 2014; 7:119. BioMed Central Full Text
  • [41]Bigdeli M, Rafie SM, Namavari MM, Jamshidi S. Report of Theileria annulata and Babesia canis infections in dogs. Comp Clin Pathol. 2012; 21:375-7.
  • [42]De Miranda RL, O’Dwyer LH, De Castro JR, Metzger B, Rubini AS, Mundim AV et al.. Prevalence and molecular characterization of Hepatozoon canis in dogs from urban and rural areas in Southeast Brazil. Res Vet Sci. 2014; 97:326-9.
  • [43]Gomes PV, Mundim MJS, Mundim AV, Ávila DF, Guimarães EC, Cury MC. Occurrence of Hepatozoon sp. in dogs in the urban area originating from a municipality in southeastern Brazil. Vet Parasitol. 2010; 174:155-61.
  文献评价指标  
  下载次数:3次 浏览次数:10次