期刊论文详细信息
Orphanet Journal of Rare Diseases
Modeling changes in biomarkers in Gaucher disease patients receiving enzyme replacement therapy using a pathophysiological model
France Mentré5  Nadia Belmatoug1  Bruno Fantin1  Anne Boutten6  Roseline Froissart3  Catherine Caillaud4  Jérôme Stirnemann2  Marie Vigan5 
[1] Service de Médecine Interne, Hôpital Beaujon, AP–HP, Clichy, France;Division of General Internal Medicine, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland;Laboratoire des Maladies Héréditaires du Métabolisme, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France;Laboratoire de Biochimie, Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France;Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France;Laboratoire de Biochimie, Hôpital Bichat, Paris, France
关键词: Model;    Platelets;    Hemoglobin;    Chitotriosidase;    Ferritin;    Glucosylceramide;    Imiglucerase;    Enzyme replacement therapy;    French registry;    Gaucher disease;   
Others  :  861465
DOI  :  10.1186/1750-1172-9-95
 received in 2014-03-07, accepted in 2014-06-20,  发布年份 2014
PDF
【 摘 要 】

Background

Gaucher disease (GD) is a rare recessively inherited disorder caused by deficiency of a lysosomal enzyme, glucocerebrosidase. Accumulation of glucosylceramide or glucosylsphingosine in macrophages leads to increased production of ferritin and chitotriosidase and to decreases in hemoglobin concentration and platelet count, which are used as blood biomarkers. GD is treated by enzyme replacement therapy (ERT) or, sometimes by substrate reduction therapy. However, no physiological model for analysis of biomarkers change during ERT has been proposed. We aimed to develop a pathophysiological model to analyze biomarker’s response to ERT and several covariates impact.

Methods

Changes in blood ferritin, chitotriosidase, hemoglobin and platelets were analyzed in French GD Registry patients receiving imiglucerase/alglucerase as ERT. We used simplified exponential pathophysiological model, with initial concentration, biomarkers amplitude of variation and rate constant of normalization during ERT. Changes in four biomarkers were analyzed separately and then all four together from initiation to discontinuation of ERT, or until the end of follow-up. Several covariates were tested, including age at ERT initiation, splenectomy, sex, genotype (N370S/N370S), and ERT dose.

Results

An exponential model gave a good data fit. The four biomarkers analysis showed that the rate of nomalization was the same for all biomarkers, with a half-life of 0.5 years. Predicted values of biomarkers at ERT’s steady state were 40% and 10% of initial concentrations, for ferritin and chitotriosidase, respectively, and 120% and 200% for hemoglobin and platelets, respectively. We found that 3 covariates had an effect on initial concentration or on amplitude of variation in ferritin, hemoglobin and platelets: women and patients under 15 years of age had lower ferritin and hemoglobin concentrations, and patients under 15 years of age had higher platelet count. Splenectomized patients had higher ferritin concentrations and platelet count and lower amplitude of variation of hemoglobin.

Conclusion

We report the first dynamic model of biomarker changes in GD. It enabled us to estimate that 95% of biomarker response to ERT was achieved in 2 years, but with high inter-patient variability. We also found that with the current treatment, normalization of chitotriosidase and ferritin will occur in about 65% of patients.

【 授权许可】

   
2014 Vigan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725001522469.pdf 1954KB PDF download
120KB Image download
60KB Image download
132KB Image download
59KB Image download
【 图 表 】

【 参考文献 】
  • [1]Grabowski GA: Advances in Gaucher Disease: Basic and Clinical Perspectives. London: Future Medicine Ltd; 2013.
  • [2]Brady RO, Kanfer JN, Shapiro D: Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 1965, 18:221-225.
  • [3]Beutler E: Gaucher disease. Arch Intern Med 1999, 159:881-882.
  • [4]Grabowski GA: Recent clinical progress in Gaucher disease. Curr Opin Pediatr 2005, 17:519-524.
  • [5]Jmoudiak M, Futerman AH: Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005, 129:178-188.
  • [6]Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE: Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991, 324:1464-1470.
  • [7]Hollak CE, Aerts JM, Goudsmit R, Phoa SS, Ek M, Van Weely S, Von dem Borne AE, Van Oers MH: Individualised low-dose alglucerase therapy for type 1 Gaucher’s disease. Lancet 1995, 345:1474-1478.
  • [8]Bijsterbosch MK, Donker W, Van de Bilt H, Van Weely S, Van Berkel TJ, Aerts JM: Quantitative analysis of the targeting of mannose-terminal glucocerebrosidase: predominant uptake by liver endothelial cells. Eur J Biochem 1996, 237:344-349.
  • [9]Grabowski GA, Barton NW, Pastores G, Dambrosia JM, Banerjee TK, McKee MA, Parker C, Schiffmann R, Hill SC, Brady RO: Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 1995, 122:33-39.
  • [10]Zimran A, Altarescu G, Philips M, Attias D, Jmoudiak M, Deeb M, Wang N, Bhirangi K, Cohn GM, Elstein D: Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood 2010, 115:4651-4656.
  • [11]Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D: Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 2011, 118:5767-5773.
  • [12]Hollak CE, Van Weely S, Van Oers MH, Aerts JM: Marked elevation of plasma chitotriosidase activity: a novel hallmark of Gaucher disease. J Clin Invest 1994, 93:1288-1292.
  • [13]Morgan MA, Hoffbrand AV, Laulicht M, Luck W, Knowles S: Serum ferritin concentration in Gaucher’s disease. Br Med J (Clin Res Ed) 1983, 286:1864.
  • [14]Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang D, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG: Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 2010, 116:1574-1584.
  • [15]Cabrera-Salazar MA, O’Rourke E, Henderson N, Wessel H, Barranger JA: Correlation of surrogate markers of Gaucher disease: implications for long-term follow up of enzyme replacement therapy. Clin Chim Acta 2004, 344:101-107.
  • [16]Mekinian A, Stirnemann J, Belmatoug N, Heraoui D, Fantin B, Fain O, Charpentier A, Rose C: Ferritinemia during type 1 Gaucher disease: mechanisms and progression under treatment. Blood Cells Mol Dis 2012, 49:53-57.
  • [17]Stirnemann J, Belmatoug N, Vincent C, Fain O, Fantin B, Mentré F: Bone events and evolution of biologic markers in Gaucher disease before and during treatment. Arthritis Res Ther 2010, 12:R156. BioMed Central Full Text
  • [18]Boot RG, Verhoek M, De Fost M, Hollak CEM, Maas M, Bleijlevens B, Van Breemen MJ, Van Meurs M, Boven LA, Laman JD, Moran MT, Cox TM, Aerts JMFG: Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 2004, 103:33-39.
  • [19]Van Breemen MJ, De Fost M, Voerman JSA, Laman JD, Boot RG, Maas M, Hollak CEM, Aerts JM, Rezaee F: Increased plasma macrophage inflammatory protein (MIP)-1alpha and MIP-1beta levels in type 1 Gaucher disease. Biochim Biophys Acta 2007, 1772:788-796.
  • [20]Stein P, Yu H, Jain D, Mistry PK: Hyperferritinemia and iron overload in type 1 Gaucher disease. Am J Hematol 2010, 85:472-476.
  • [21]Bussink AP, Van Eijk M, Renkema GH, Aerts JM, Boot RG: The biology of the Gaucher cell: the cradle of human chitinases. Int Rev Cytol 2006, 252:71-128.
  • [22]Guggenbuhl P, Grosbois B, Chalès G: Gaucher disease. Joint Bone Spine 2008, 75:116-124.
  • [23]Grabowski GA, Kacena K, Cole JA, Hollak CEM, Zhang L, Yee J, Mistry PK, Zimran A, Charrow J, Vom Dahl S: Dose–response relationships for enzyme replacement therapy with imiglucerase/alglucerase in patients with Gaucher disease type 1. Genet Med 2009, 11:92-100.
  • [24]Lindstrom MJ, Bates DM: Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46:673.
  • [25]Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, Berger MG, Rose C, Camou F, De Roux-Serratrice C, Grosbois B, Kaminsky P, Robert A, Caillaud C, Froissart R, Levade T, Masseau A, Mignot C, Sedel F, Dobbelaere D, Vanier MT, Valayanopoulos V, Fain O, Fantin B, Billette T, Mentré F, Belmatoug N: The French Gaucher’s disease registry: clinical characteristics, complications and treatment of 562 patients. Orphanet J Rare Dis 2012, 7:77. BioMed Central Full Text
  • [26]Aerts JM, Hollak CE: Plasma and metabolic abnormalities in Gaucher’s disease. Baillieres Clin Haematol 1997, 10:691-709.
  • [27]Upton RN, Mould DR: Basic concepts in population modeling, simulation, and model-based drug development: part 3—introduction to pharmacodynamic modeling methods. CPT: Pharmacomet Syst Pharmacol 2014, 3:e88.
  • [28]Mould DR, Upton RN: Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT: Pharmacomet Syst Pharmacol 2013, 2:e38.
  • [29]Karlsson MO, Savic RM: Diagnosing model diagnostics. Clin Pharmacol Ther 2007, 82:17-20.
  • [30]Kuhn E, Lavielle M: Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 2005, 49:1020-1038.
  • [31]Hollak CE, Maas M, Aerts JM: Clinically relevant therapeutic endpoints in type I Gaucher disease. J Inherit Metab Dis 2001, 24(Suppl 2):97-105. discussion 87–88
  • [32]De Fost M, Hollak CEM, Groener JEM, Aerts JMFG, Maas M, Poll LW, Wiersma MG, Häussinger D, Brett S, Brill N, Vom Dahl S: Superior effects of high-dose enzyme replacement therapy in type 1 Gaucher disease on bone marrow involvement and chitotriosidase levels: a 2-center retrospective analysis. Blood 2006, 108:830-835.
  • [33]Kaplan P, Andersson HC, Kacena KA, Yee JD: The clinical and demographic characteristics of nonneuronopathic Gaucher disease in 887 children at diagnosis. Arch Pediatr Adolesc Med 2006, 160:603-608.
  • [34]Pavlova EV, Deegan PB, Tindall J, McFarlane I, Mehta A, Hughes D, Wraith JE, Cox TM: Potential biomarkers of osteonecrosis in Gaucher disease. Blood Cells Mol Dis 2011, 46:27-33.
  • [35]Mucci JM, Suqueli García F, De Francesco PN, Ceci R, Di Genaro S, Fossati CA, Delpino MV, Rozenfeld PA: Uncoupling of osteoblast-osteoclast regulation in a chemical murine model of Gaucher disease. Gene 2013, 532:186-191.
  • [36]Dekker N, Van Dussen L, Hollak CEM, Overkleeft H, Scheij S, Ghauharali K, Van Breemen MJ, Ferraz MJ, Groener JEM, Maas M, Wijburg FA, Speijer D, Tylki-Szymanska A, Mistry PK, Boot RG, Aerts JM: Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 2011, 118:e118-127.
  • [37]Rolfs A, Giese A-K, Grittner U, Mascher D, Elstein D, Zimran A, Böttcher T, Lukas J, Hübner R, Gölnitz U, Röhle A, Dudesek A, Meyer W, Wittstock M, Mascher H: Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-jewish, caucasian cohort of Gaucher disease patients. PLoS One 2013, 8:e79732.
  文献评价指标  
  下载次数:56次 浏览次数:23次