期刊论文详细信息
Radiation Oncology
Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber
Jung Keun Cho3  Dong Oh Shin4  Sung-Yong Park6  Myongguen Yoon2  Se Byeong Lee5  Dongho Shin5  Young Kyung Lim5  Jungwook Shin7  Weon Kuu Chung1  Dong Wook Kim1 
[1] Department of Radiation Oncology, Kyung Hee University Hospital at Gandong, Seoul, Korea;Department of Radiological Science, Korea University, Seoul, Korea;Department of Radiological Science, Jeonju University, Jeonju, Korea;Department of Radiation Oncology, Kyung Hee University Medical Center, Seoul, Korea;Proton Therapy Center, National Cancer Center, Ilsan, Korea;Proton Therapy Center, McLaren Cancer Institute, Flint, MI, USA;Radiation Oncology, University of California, San Francisco, USA
关键词: Eye;    Boron;    CR-39;    Neutron;    Secondary;    Proton;   
Others  :  1153332
DOI  :  10.1186/1748-717X-8-182
 received in 2013-01-10, accepted in 2013-07-15,  发布年份 2013
PDF
【 摘 要 】

Background

We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment.

Methods

Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation.

Results

The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm.

Conclusions

We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material.

【 授权许可】

   
2013 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407075755943.pdf 1432KB PDF download
Figure 6. 68KB Image download
Figure 5. 93KB Image download
Figure 4. 46KB Image download
Figure 3. 50KB Image download
Figure 2. 133KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Schneider U, Lomax A, Lombriser N: Comparative risk assessment of secondary cancer incidence after treatment of Hodgkin's disease with photon and proton radiation. Radiat Res 2000, 154:382-388.
  • [2]Jiang H, Wang B, Xu XG, Suit HD, Paganetti H: Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol 2005, 50:4337-4353.
  • [3]Yan X, Titt U, Koehler AM, Newhauser WD: Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field. Nucl Instrum Methods Phys Res, Sect A 2002, 476:429-434.
  • [4]Shin D, Yoon M, Kwak J, Shin J, Lee SB, Park SY, Park S, Kim DY, Cho KH: Secondary neutron doses for several beam configurations for proton therapy. Int J Radiat Oncol Biol Phys 2009, 74:260-265.
  • [5]Agosteo S, Birattari C, Caravaggio M, Silari M, Tosi G: Secondary neutron and photon dose in proton therapy. Radiother Oncol 1998, 48:293-305.
  • [6]Schneider U, Agosteo S, Pedroni E, Besserer J: Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys 2002, 53:244-251.
  • [7]Polf JC, Newhauser WD, Titt U: Patient neutron dose equivalent exposures outside of the proton therapy treatment field. Radiat Prot Dosimetry 2005, 115:154-158.
  • [8]Hall EJ: Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 2006, 65:1-7.
  • [9]Paganetti H, Bortfeld T, Delaney TF: Neutron dose in proton radiation therapy: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006; 65:1–7). Int J Radiat Oncol Biol Phys 2006, 66:1594-1595. author reply 1595
  • [10]Jarlskog CZ, Paganetti H: Sensitivity of different dose scoring methods on organ-specific neutron dose calculations in proton therapy. Phys Med Biol 2008, 53:4523-4532.
  • [11]Perez-Andujar A, Newhauser WD, Deluca PM: Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system. Phys Med Biol 2009, 54:993-1008.
  • [12]Wroe A, Clasie B, Kooy H, Flanz J, Schulte R, Rosenfeld A: Out-of-field dose equivalents delivered by passively scattered therapeutic proton beams for clinically relevant field configurations. Int J Radiat Oncol Biol Phys 2009, 73:306-313.
  • [13]Taddei PJ, Mirkovic D, Fontenot JD, Giebeler A, Zheng Y, Kornguth D, Mohan R, Newhauser WD: Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol 2009, 54:2259-2275.
  • [14]Kim DW, Shin J, Ahn SH, Lee SY, Shin D, Yoon M, Lee SB, Park SY: Measurement of the secondary neutron dose generated during proton beam therapy for craniospinal irradiation. J Korean Phys Soc 2010, 56:1208-1214.
  • [15]Moyers MF, Benton ER, Ghebremedhin A, Coutrakon G: Leakage and scatter radiation from a double scattering based proton beamline. Medical physics 2008, 35:128-144.
  • [16]Kim B, Han S, Kwon J, Jun S, Kim J, Lee SB, Shin D: Neutron spectral measurement at the proton therapy room of the national cancer center of Korea. J Nucl Sci Technol 2008, Supplement 5:229-232.
  • [17]Goitein M, Miller T: Planning proton therapy of the eye. Medical physics 1983, 10:275-283.
  • [18]Bonnett DE, Kacperek A, Sheen MA, Goodall R, Saxton TE: The 62 MeV proton beam for the treatment of ocular melanoma at Clatterbridge. Br J Radiol 1993, 66:907-914.
  • [19]Egger E, Zografos L, Schalenbourg A, Beati D, Bohringer T, Chamot L, Goitein G: Eye retention after proton beam radiotherapy for uveal melanoma. Int J Radiat Oncol Biol Phys 2003, 55:867-880.
  • [20]Olsher R, Hsu H, Beverding A, Klerk J, Willian H, Vasilik D, Robert T: Wendi: an improved neutron rem meter. Health Phys 2000, 79:170-181.
  • [21]Corp TE: SWENDI-2 detector technical manual. In WENDI-2 Detector Technical Manual. City: Thermo Electron Corp; 2003.
  • [22]Shin J, Kim D, Lim Y, Ahn S, Shin D, Yoon M, Park S, Lee S: Monte Carlo modeling and simulation of a passive treatment proton beam delivery system using a modulation wheel. J KyPhys Soc 2010, 25:153-163.
  • [23]NCRP: Protection against neutron radiation. NCRP Report 38. Washington, DC: National Council on Radiation Protection and Measurements; 1971.
  • [24]Brenner DJ, Elliston CD, Hall EJ, Paganetti H: Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator. Phys Med Biol 2009, 54:6065-6078.
  • [25]Fontenot J, Taddei P, Zheng Y, Mirkovic D, Jordan T, Newhauser W: Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer. Phys Med Biol 2008, 53:1677-1688.
  文献评价指标  
  下载次数:32次 浏览次数:16次