期刊论文详细信息
Molecular Cytogenetics
Multicolor banding remains an important adjunct to array CGH and conventional karyotyping
Caroline Mackie Ogilvie2  Angela F Davies1  Susan M Bint1 
[1] Cytogenetics department, GSTS-Pathology, Guy’s and St. Thomas’ Hospital NHS Foundation Trust, London SE1 9RT, UK;Division of Genetics and Molecular Medicine, King’s College London, School of Medicine at Guy’s, King’s College and St Thomas’ Hospitals, London SE1 9RT, UK
关键词: Complex chromosome rearrangements;    Karyotype analysis;    Array CGH;    Fluorescence in situ hybridization;    Multicolor banding;   
Others  :  1150645
DOI  :  10.1186/1755-8166-6-55
 received in 2013-09-27, accepted in 2013-10-21,  发布年份 2013
PDF
【 摘 要 】

Background

Array comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics. However, abnormalities detected by karyotype analysis cannot always be characterised by scrutinising the G-banded pattern alone, and imbalance detected by array CGH cannot always be visualised in the context of metaphase chromosomes. In some cases further techniques are needed for detailed characterisation of chromosomal abnormalities. We investigated seven cases involving structural chromosome rearrangements detected by karyotype analysis, and one case where imbalance was primarily detected by array CGH. Multicolor banding (MCB) was used in all cases and proved invaluable in understanding the detailed structure of the abnormalities.

Findings

Karyotype analysis detected structural chromosome rearrangements in 7 cases and MCB was used to help refine the karyotype for each case. Array CGH detected imbalance in an eighth case, where previously, G-banded chromosome analysis had reported a normal karyotype. Karyotype analysis of a second tissue type revealed this abnormality in mosaic form; however, MCB was needed in order to characterise this rearrangement. MCB provided information for the delineation of small deletions, duplications, insertions and inversions and helped to assign breakpoints which were difficult to identify from G-banded preparations due to ambiguous banding patterns.

Conclusion

Despite the recent advance of array CGH in molecular cytogenetics we conclude that fluorescence in situ hybridization, including MCB, is still required for the elucidation of structural chromosome rearrangements, and remains an essential adjunct in modern diagnostic laboratories.

【 授权许可】

   
2013 Bint et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405210311797.pdf 1774KB PDF download
Figure 8. 102KB Image download
Figure 7. 58KB Image download
Figure 6. 76KB Image download
Figure 5. 113KB Image download
Figure 4. 94KB Image download
Figure 3. 75KB Image download
Figure 2. 74KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Chudoba I, Plesch A, Lorch T, Lemke J, Claussen U, Senger G: High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Cell Genet 1999, 84:156-160.
  • [2]Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U: Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 2002, 9:335-339.
  • [3]Liehr T, Starke H, Weise A, Lehrer H, Claussen U: Multicolor FISH probe sets and their applications. Histol Histopathol 2004, 19:229-237.
  • [4]Shaffer LG, McGowan-Jordan J, Schmid M (Eds): ISCN (2013): an international system for human cytogenetic nomenclature. Basel: Karger; 2013.
  • [5]Liehr T, Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Weier HU, Claussen U: Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 2002, 97:43-50.
  • [6]Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, et al.: Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2007, 2:e327.
  • [7]Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, Cheon CK, Hwang SH, Kang HYCP: Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Mol Cytogenet 2011, 4:12. BioMed Central Full Text
  • [8]Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Mackie Ogilvie C: Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals - results from four years’ clinical application for over 8,700 patients. Mol Cytogenet 2013, 6:16. BioMed Central Full Text
  • [9]Zelante L, Calvano S, Dallapiccola B, Mingarelli R, Antonacci R, Chiovato L, Rocchi M: Patient with de novo 12p+ syndrome identified as dir dup (12) (p13) using subchromosomal painting libraries from somatic cell hybrids. Clin Genet 1994, 46:368-71.
  • [10]Rauch A, Trautmann U, Pfeiffer RA: Clinical and molecular cytogenetic observations in three cases of “trisomy 12p syndrome”. Am J Med Genet 1996, 63:243-9.
  • [11]Segel R, Peter I, Demmer LA, Cowan JM, Hoffman JD, Bianchi DW: The natural history of trisomy 12p. Am J Med Genet A 2006, 140:695-703.
  • [12]Seller MJ, Bint S, Kavalier F, Brown RN, Ogilvie CM: Multicolor banding detects a complex three chromosome, seven breakpoint unbalanced rearrangement in an ICSI-derived fetus with multiple abnormalities. Am J Med Genet A 2006, 140:1102-1107.
  • [13]Johannes C, Chudoba I, Obe G: Analysis of X-ray-induced aberrations in human chromosome 5 using high-resolution multicolour banding FISH (mBAND). Chromosome Res 1999, 7:625-633.
  • [14]Chudoba I, Hickmann G, Friedrich T, Jauch A, Kozlowski P, Senger G: mBAND: a high resolution multicolor banding technique for the detection of complex intrachromosomal aberrations. Cytogenet Genome Res 2004, 104:390-393.
  • [15]Hu J, Sathanoori M, Kochmar SJ, Surti U: Application of multicolor banding for identification of complex chromosome 18 rearrangements. J Mol Diagn 2006, 8:521-525. quiz 528
  • [16]Ahn JW, Mann K, Docherty Z, Mackie Ogilvie C: Submicroscopic chromosome imbalance in patients with developmental delay and/or dysmorphism referred specifically for Fragile X testing and karyotype analysis. Mol Cytogenet 2008, 1:2. BioMed Central Full Text
  • [17]Mann K, Fox SP, Abbs SJ, Yau SC, Scriven PN, Docherty Z, Ogilvie CM: Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. Lancet 2001, 358:1057-1061.
  文献评价指标  
  下载次数:48次 浏览次数:27次