| Retrovirology | |
| Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells | |
| Clare Jolly1  Deenan Pillay2  Marlen Aasa-Chapman1  Boghuma Kabisen Titanji1  | |
| [1] Division of Infection and Immunity, University College London, Cruciform Building, Gower St, London WC1E 6BT, United Kingdom;Africa Centre for Health and Population Sciences, University of KwaZulu Natal, KwaZulu-Natal, South Africa | |
| 关键词: ART; Protease inhibitor; Cell-cell spread; Virological synapse; HIV-1; | |
| Others : 805467 DOI : 10.1186/1742-4690-10-161 |
|
| received in 2013-10-11, accepted in 2013-12-11, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes.
Results
Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4–20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection.
Conclusions
We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread.
【 授权许可】
2013 Titanji et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708080114894.pdf | 828KB | ||
| Figure 5. | 57KB | Image | |
| Figure 4. | 64KB | Image | |
| Figure 3. | 50KB | Image | |
| Figure 2. | 61KB | Image | |
| Figure 1. | 103KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Shan L, Siliciano RF: From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. Bioessays 2013, 35(6):544-552.
- [2]Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, et al.: HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010, 16(4):460-465.
- [3]Vallejo A, Gutierrez C, Hernandez-Novoa B, Diaz L, Madrid N, Abad-Fernandez M, Dronda F, Perez-Elias MJ, Zamora J, Munoz E, et al.: The effect of intensification with raltegravir on the HIV-1 reservoir of latently infected memory CD4 T cells in suppressed patients. AIDS 2012, 26(15):1885-1894.
- [4]Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, Pandori M, Sinclair E, Gunthard HF, Fischer M, et al.: Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 2010, 24(16):2451-2460.
- [5]Frenkel LM, Wang Y, Learn GH, McKernan JL, Ellis GM, Mohan KM, Holte SE, De Vange SM, Pawluk DM, Melvin AJ, et al.: Multiple viral genetic analyses detect low-level human immunodeficiency virus type 1 replication during effective highly active antiretroviral therapy. J Virol 2003, 77(10):5721-5730.
- [6]Kieffer TL, Finucane MM, Nettles RE, Quinn TC, Broman KW, Ray SC, Persaud D, Siliciano RF: Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis 2004, 189(8):1452-1465.
- [7]Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, et al.: Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol 2006, 80(13):6441-6457.
- [8]Hubner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY, Li XD, Asmuth DM, Huser T, Chen BK: Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 2009, 323(5922):1743-1747.
- [9]Jolly C, Sattentau QJ: Retroviral spread by induction of virological synapses. Traffic 2004, 5(9):643-650.
- [10]Sattentau Q: Avoiding the void: cell-to-cell spread of human viruses. Nature Rev Microbiol 2008, 6(11):815-826.
- [11]Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA: Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 1993, 67(4):2182-2190.
- [12]Johnson DC, Huber MT: Directed egress of animal viruses promotes cell-to-cell spread. J Virol 2002, 76(1):1-8.
- [13]Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D: Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Path 2010, 6(2):e1000788.
- [14]Sattentau QJ: Cell-to-cell spread of retroviruses. Viruses 2010, 2(6):1306-1321.
- [15]Martin N, Sattentau Q: Cell-to-cell HIV-1 spread and its implications for immune evasion. Curr Opin HIV AIDS 2009, 4(2):143-149.
- [16]Abela IA, Berlinger L, Schanz M, Reynell L, Gunthard HF, Rusert P, Trkola A: Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Path 2012, 8(4):e1002634.
- [17]Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O: Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 2007, 81(2):1000-1012.
- [18]Sewald X, Gonzalez DG, Haberman AM, Mothes W: In vivo imaging of virological synapses. Nat Comm 2012, 3:1320.
- [19]Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, Tager AM, Luster AD, Mempel TR: HIV-infected T cells are migratory vehicles for viral dissemination. Nature 2012, 490(7419):283-287.
- [20]Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 2011, 477(7362):95-98.
- [21]Jolly C: Cell-to-cell transmission of retroviruses: innate immunity and interferon-induced restriction factors. Virology 2011, 411(2):251-259.
- [22]Richardson MW, Carroll RG, Stremlau M, Korokhov N, Humeau LM, Silvestri G, Sodroski J, Riley JL: Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5alpha. J Virol 2008, 82(22):11117-11128.
- [23]Permanyer M, Ballana E, Ruiz A, Badia R, Riveira-Munoz E, Gonzalo E, Clotet B, Este JA: Antiretroviral agents effectively block HIV replication after cell-to-cell transfer. J Virol 2012, 86(16):8773-8780.
- [24]Kempf DJ, Marsh KC, Kumar G, Rodrigues AD, Denissen JF, McDonald E, Kukulka MJ, Hsu A, Granneman GR, Baroldi PA, et al.: Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. J Antimicrob Chemother 1997, 41(3):654-660.
- [25]De Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R, Wigerinck P, de Bethune MP: TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. J Antimicrob Chemother 2005, 49(6):2314-2321.
- [26]Bierman WF, van Agtmael MA, Nijhuis M, Danner SA, Boucher CA: HIV monotherapy with ritonavir-boosted protease inhibitors: a systematic review. AIDS 2009, 23(3):279-291.
- [27]Perez-Valero I, Arribas JR: Protease inhibitor monotherapy. Curr Opinion Infect Dis 2011, 24(1):7-11.
- [28]Gupta RK, Jordan MR, Sultan BJ, Hill A, Davis DH, Gregson J, Sawyer AW, Hamers RL, Ndembi N, Pillay D, et al.: Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet 2012, 380(9849):1250-1258.
- [29]WHO: HIV Drug Resistance Report. Geneva, Switzerland: WHO HIV/AIDS Prog, July 2012; 2012. http://www.who.int/hiv/pub/drugresistance/report2012/en/ webcite accessed November 2013.
- [30]Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore RD, Siliciano RF: Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J Clin Inv 2013, 123(9):3848-3860.
- [31]Jolly C, Booth NJ, Neil SJ: Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 2010, 84(23):12185-12199.
- [32]Jolly C, Mitar I, Sattentau QJ: Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol 2007, 81(11):5547-5560.
- [33]Martin N, Welsch S, Jolly C, Briggs JA, Vaux D, Sattentau QJ: Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 2010, 84(7):3516-3527.
- [34]Casartelli N, Sourisseau M, Feldmann J, Guivel-Benhassine F, Mallet A, Marcelin AG, Guatelli J, Schwartz O: Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Path 2010, 6(6):e1000955.
- [35]Back D, Sekar V, Hoetelmans RM: Darunavir: pharmacokinetics and drug interactions. Antivir Ther 2008, 13(1):1-13.
- [36]Rittweger M, Arasteh K: Clinical pharmacokinetics of darunavir. Clin Pharmacokinet 2007, 46(9):739-756.
- [37]Lafeuillade A, Solas C, Halfon P, Chadapaud S, Hittinger G, Lacarelle B: Differences in the detection of three HIV-1 protease inhibitors in non-blood compartments: clinical correlations. HIV Clin Trials 2002, 3(1):27-35.
- [38]Kalpana VRPaGV: Analysis of 2LTR junctions of viral DNA in infected cells. In Meth Mol Biol: HIV Protocols. Volume. Second edition. Edited by Springerlink. New York, USA: Humana Press; 2008.
- [39]Durham ND, Yewdall AW, Chen P, Lee R, Zony C, Robinson JE, Chen BK: Neutralization resistance of virological synapse-mediated HIV-1 Infection is regulated by the gp41 cytoplasmic tail. J Virol 2012, 86(14):7484-7495.
- [40]Massanella M, Puigdomenech I, Cabrera C, Fernandez-Figueras MT, Aucher A, Gaibelet G, Hudrisier D, Garcia E, Bofill M, Clotet B, et al.: Anti gp41 antibodies fail to block early events of virological synapses but inhibit HIV spread between T cells. AIDS 2009, 23(2):183-188.
- [41]Chen P, Hubner W, Spinelli MA, Chen BK: Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 2007, 81(22):12582-12595.
- [42]Duncan CJ, Russell RA, Sattentau QJ: High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS 2013, 27(14):2201-2206.
- [43]Dam E, Quercia R, Glass B, Descamps D, Launay O, Duval X, Krausslich HG, Hance AJ, Clavel F, Group AS: Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Path 2009, 5(3):e1000345.
- [44]Dirauf P, Meiselbach H, Sticht H: Effects of the V82A and I54V mutations on the dynamics and ligand binding properties of HIV-1 protease. J Mol Mod 2010, 16(10):1577-1583.
- [45]Parry CM, Kolli M, Myers RE, Cane PA, Schiffer C, Pillay D: Three residues in HIV-1 matrix contribute to protease inhibitor susceptibility and replication capacity. Antimicrob Agents Chemother 2011, 55(3):1106-1113.
- [46]Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, Tappero JW, Bukusi EA, Cohen CR, Katabira E, et al.: Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Eng J Med 2012, 367(5):399-410.
- [47]Celum C, Baeten JM: Antiretroviral-based HIV-1 prevention: antiretroviral treatment and pre-exposure prophylaxis. Antivir Ther 2012, 17(8):1483-1493.
- [48]Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, Malahleha M, Owino F, Manongi R, Onyango J, et al.: Preexposure prophylaxis for HIV infection among African women. N Eng J Med 2012, 367(5):411-422.
- [49]Jolly C, Kashefi K, Hollinshead M, Sattentau QJ: HIV-1 cell to cell transfer across an env-induced, actin-dependent synapse. J Exp Med 2004, 199(2):283-293.
- [50]Jolly C, Welsch S, Michor S, Sattentau QJ: The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. PLoS Path 2011, 7(9):e1002226.
- [51]Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ, Cranmer L, O’Shea A, Callender M, Spivak A, Brennan T, et al.: Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci U S A 2009, 106(23):9403-9408.
- [52]Yilmaz A, Verhofstede C, D’Avolio A, Watson V, Hagberg L, Fuchs D, Svennerholm B, Gisslen M: Treatment intensification has no effect on the HIV-1 central nervous system infection in patients on suppressive antiretroviral therapy. J AIDS 2010, 55(5):590-596.
- [53]Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP, Thrasher AJ, Collins MK, Philpott NJ: Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 2007, 15(11):1947-1954.
PDF