期刊论文详细信息
Particle and Fibre Toxicology
Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae)
Christopher A Saski1  Matthew B Lee2  Dana Nayduch2 
[1] Clemson University Genomics and Computational Biology Laboratory, Institute for Translational Genomics, BRC #310, 105 Collins St, Clemson, SC 29634, USA;USDA-ARS, Center for Grain and Animal Health Research, Arthropod Borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS 66502, USA
关键词: Defensin;    Cecropin;    Attacin;    RNAseq;    JAK/STAT;    Imd;    Toll;    Biting midge;    Innate immunity;   
Others  :  1181848
DOI  :  10.1186/1756-3305-7-388
 received in 2014-06-09, accepted in 2014-08-01,  发布年份 2014
PDF
【 摘 要 】

Background

Female Culicoides sonorensis midges (Diptera: Ceratopogonidae) are vectors of pathogens that impact livestock and wildlife in the United States. Little is known about their biology on a molecular-genetic level, including components of their immune system. Because the insect immune response is involved with important processes such as gut microbial homeostasis and vector competence, our aims were to identify components of the midge innate immune system and examine their expression profiles in response to diet across time.

Methods

In our previous work, we de novo sequenced and analyzed the transcriptional landscape of female midges under several feeding states including teneral (unfed) and early and late time points after blood and sucrose. Here, those transcriptomes were further analyzed to identify insect innate immune orthologs, particularly humoral immune response elements. Additionally, we examined immune gene expression profiles in response to diet over time, on both a transcriptome-wide, whole-midge level and more specifically via qRTPCR analysis of antimicrobial peptide (AMP) expression in the alimentary canal.

Results

We identified functional units comprising the immune deficiency (Imd), Toll and JAK/STAT pathways, including humoral factors, transmembrane receptors, signaling components, transcription factors/regulators and effectors such as AMPs. Feeding altered the expression of receptors, regulators, AMPs, prophenoloxidase and thioester-containing proteins, where blood had a greater effect than sucrose on the expression profiles of most innate immune components. qRTPCR of AMP genes showed that all five were significantly upregulated in the alimentary canal after blood feeding, possibly in response to proliferating populations of gut bacteria.

Conclusions

Identification and functional insight of humoral/innate immune components in female C. sonorensis updates our knowledge of the molecular biology of this important vector. Because diet alone influenced the expression of immune pathway components, including their effectors, subsequent study of the role of innate immunity in biological processes such as gut homeostasis and life history are being pursued. Furthermore, since the humoral response is a key contributor in gut immunity, manipulating immune gene expression will help in uncovering genetic components of vector competence, including midgut barriers to infection. The results of such studies will serve as a platform for designing novel transmission-blocking strategies.

【 授权许可】

   
2014 Nayduch et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150515083504319.pdf 1950KB PDF download
Figure 4. 57KB Image download
Figure 3. 41KB Image download
Figure 2. 44KB Image download
Figure 1. 246KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Drolet BS, Campbell CL, Stuart MA, Wilson WC: Vector competence of Culicoides sonorensis (Diptera: Ceratopogonidae) for vesicular stomatitis virus. J Med Entomol 2005, 42(3):409-418.
  • [2]Perez De Leon AA, Tabachnick WJ: Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 2006, 43(2):323-329.
  • [3]Wigglesworth VB: Digestion and Nutrition. In The Principles of Insect Physiology. &th edition. New York: Chapman and Hall; 1972:476-552.
  • [4]Lemaitre B, Hoffmann J: The host defense of Drosophila melanogaster. Annu Rev Immunol 2007, 25(1):697-743.
  • [5]Gilbert LI: Insect Molecular Biology and Biochemistry. London, UK: Academic Press; 2012.
  • [6]El Chamy L, Leclerc V, Caldelari I, Reichhart JM: Sensing of 'danger signals’ and pathogen-associated molecular patterns defines binary signaling pathways 'upstream’ of Toll. Nat Immunol 2008, 9(10):1165-1170.
  • [7]Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler J-L: The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 2005, 6(9):946-953.
  • [8]Souza-Neto JA, Sim S, Dimopoulos G: An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA 2009, 106(42):17841-17846.
  • [9]Xi Z, Ramirez JL, Dimopoulos G: The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 2008, 4(7):e1000098.
  • [10]Kingsolver MB, Huang Z, Hardy RW: Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013, 425(24):4921-4936.
  • [11]Bulet P, Hetru C, Dimarcq JL, Hoffmann D: Antimicrobial peptides in insects: structure and function. Dev Comp Immunol 1999, 23(4–5):329-344.
  • [12]Bulet P, Stöcklin R: Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 2005, 12(1):3-11.
  • [13]Bulet P, Stöcklin R, Menin L: Antimicrobial peptides: from invertebrates to vertebrates. Immunol Rev 2004, 198(1):169-184.
  • [14]Dimopoulos G, Richman A, Müller HM, Kafatos FC: Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci USA 1997, 94(21):11508-11513.
  • [15]Dimopoulos G, Seeley D, Wolf A, Kafatos FC: Malaria infection of the mosquito Anopheles gambiae activates immune‒responsive genes during critical transition stages of the parasite life cycle. EMBO J 1998, 17(21):6115-6123.
  • [16]Richman AM, Dimopoulos G, Seeley D, Kafatos FC: Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 1997, 16(20):6114-6119.
  • [17]Boulanger N, Bulet P, Lowenberger C: Antimicrobial peptides in the interactions between insects and flagellate parasites. TRENDS Parasitol 2006, 22(6):262-268.
  • [18]Hao Z, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S: Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci USA 2001, 98(22):12648-12653.
  • [19]Nayduch D, Aksoy S: Refractoriness in tsetse flies (Diptera: Glossinidae) may be a matter of timing. J Med Entomol 2007, 44(4):660-665.
  • [20]Parker MD, Akey DH, Lauerman LH: Persistence of enterobacteriaceae in female adults of the biting gnat Culicoides variipennis (Diptera: Ceratopogonidae). J Med Entomol 1978, 14(5):597-598.
  • [21]Parker MD, Akey DH, Lauerman LH: Microbial flora associated with colonized and wild populations of the biting gnat Culicoides variipennis. Entomol Exp Appl 1977, 21(2):130-136.
  • [22]Volf P, Kiewegová A, Nemec A: Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitol (Praha) 2002, 49(1):73-77.
  • [23]Peterkova-Koci K, Robles-Murguia M, Ramalho-Ortigao M, Zurek L: Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit Vectors 2012, 5:145. BioMed Central Full Text
  • [24]Demaio J, Pumpuni CB, Kent M, Beier JC: The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Amer J Trop Med Hyg 1996, 54(2):219-223.
  • [25]Leulier F, Royet J: Maintaining immune homeostasis in fly gut. Nat Immunol 2009, 10(9):936-938.
  • [26]Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, Tenev T, Lemaitre B, Gstaiger M, Meier P, Leulier F: PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 2008, 4(2):147-158.
  • [27]Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, Dimopoulos G: Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 2012, 6(3):e1561.
  • [28]Azambuja P, Garcia ES, Ratcliffe NA: Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 2005, 21(12):568-572.
  • [29]Weiss B, Aksoy S: Microbiome influences on insect host vector competence. Trends Parasitol 2011, 27(11):514-522.
  • [30]Nayduch D, Lee MB, Saski CA: The reference transcriptome of the adult female biting midge (Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and sucrose feeding conditions. PLoS ONE 2014, 9(5):e98123.
  • [31]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30(9):e36.
  • [32]De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B: The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 2002, 21(11):2568-2579.
  • [33]Cooper DM, Chamberlain CM, Lowenberger C: Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 2009, 39(1):47-54.
  • [34]Aggarwal K, Silverman NS: Positive and negative regulation of the Drosophila immune response. BMB Rep 2008, 41(4):267-277.
  • [35]Lee KZ, Ferrandon D: Negative regulation of immune responses on the fly. EMBO J 2011, 30(6):988-990.
  • [36]Ferrandon D, Imler JL, Hoffmann JA: Sensing infection in Drosophila: toll and beyond. Semin Immunol 2004, 16(1):43-53.
  • [37]Tauszig S, Jouanguy E, Hoffmann JA, Imler JL: Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 2000, 97(19):10520-10525.
  • [38]Imler J-L, Hoffmann JA: Toll receptors in innate immunity. Trends Cell Biol 2001, 11(7):304-311.
  • [39]Li X-C, Zhang X-W, Zhou J-F, Ma H-Y, Liu Z-D, Zhu L, Yao X-J, Li L-G, Fang W-H: Identification, characterization, and functional analysis of tube and pelle homologs in the mud crab Scylla paramamosain. PloS ONE 2013, 8(10):e76728.
  • [40]Towb P, Sun H, Wasserman SA: Tube Is an IRAK-4 homolog in a Toll pathway adapted for development and immunity. J Innate Immun 2009, 1(4):309-321.
  • [41]Shin SW, Kokoza V, Bian G, Cheon H-M, Kim YJ, Raikhel AS: REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 2005, 280(16):16499-16507.
  • [42]Hedengren M, Borge K, Hultmark D: Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem Biophys Res Commun 2000, 279(2):574-581.
  • [43]Cudic M, Bulet P, Hoffmann R, Craik DJ, Otvos L Jr: Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects. Eur J Biochem 1999, 266(2):549-558.
  • [44]Tossi A, Sandri L, Giangaspero A: Amphipathic, α-helical antimicrobial peptides. Peptide Sci 2000, 55(1):4-30.
  • [45]Imler JL, Bulet P: Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 2005, 86:1-21.
  • [46]Bechinger B: Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 1997, 156(3):197-211.
  • [47]Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway. J Cell Sci 2004, 117(8):1281-1283.
  • [48]Callus BA, Mathey-Prevot B: SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signaling in the imaginal wing disc. Oncogene 2002, 21(31):4812-4821.
  • [49]Jackson PK: A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev 2001, 15(23):3053-3058.
  • [50]Blandin S, Levashina EA: Thioester-containing proteins and insect immunity. Mol Immunol 2004, 40(12):903-908.
  • [51]Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM: Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 2007, 316(5832):1738-1743.
  • [52]Oliveira JHM, Gonçalves RL, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RF, Edwards MC, Laurindo FR, Silva-Neto MA, Sorgine MH: Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog 2011, 7(3):e1001320.
  • [53]Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC: Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 1996, 54(2):214-218.
  • [54]Hao Z, Kasumba I, Aksoy S: Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). Insect Biochem Mol Biol 2003, 33(11):1155-1164.
  • [55]Foley E, O’Farrell PH: Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 2003, 17(1):115-125.
  • [56]Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Herve M, Chaput C, Boneca IG, Lee WJ, Lemaitre B, Mengin-Lecreulx D: Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 2004, 173(12):7339-7348.
  • [57]Gendrin M, Welchman DP, Poidevin M, Hervé M, Lemaitre B: Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog 2009, 5(12):e1000694.
  • [58]Meister S, Agianian B, Turlure F, Relógio A, Morlais I, Kafatos FC, Christophides GK: Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog 2009, 5(8):e1000542.
  • [59]Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J, Dong Y, Dimopoulos G: Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action. PLoS Pathog 2012, 8(6):e1002737.
  • [60]Cirimotich CM, Ramirez JL, Dimopoulos G: Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 2011, 10(4):307-310.
  • [61]Nakajima Y, Taylor D, Yamakawa M: Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol Biol 2002, 11(6):611-618.
  • [62]Munks R, Hamilton J, Lehane S, Lehane M: Regulation of midgut defensin production in the bloodsucking insect Stomoxys calcitrans. Insect Mol Biol 2001, 10(6):561-571.
  • [63]Lehrer RI, Ganz T: Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999, 11(1):23-27.
  文献评价指标  
  下载次数:27次 浏览次数:8次