期刊论文详细信息
Molecular Cytogenetics
Interstitial Telomeric Sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura)
Shirlei Maria Recco-Pimentel3  Ailín Blasco Zúñiga1  Albertina Pimentel Lima2  Miryan Rivera1  Daniel Pacheco Bruschi3 
[1] Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador;Instituto Nacional de Pesquisas da Amazônia (INPA), 69060-001 Manaus, AM, Brazil;Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-863 Campinas, São Paulo, Brazil
关键词: Interstitial telomeric sequences (ITS);    rDNA;    Karyotypes;    Phyllomedusa;   
Others  :  1150233
DOI  :  10.1186/1755-8166-7-22
 received in 2014-01-27, accepted in 2014-02-26,  发布年份 2014
PDF
【 摘 要 】

Background

The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus.

Results

With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes.

Conclusion

A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an important component of this heterochromatin. We propose that the ITSs originated independently during the chromosomal evolution of these species and may provide important insights into the role of these repeats in vertebrate karyotype diversification.

【 授权许可】

   
2014 Bruschi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405153917620.pdf 1693KB PDF download
Figure 6. 106KB Image download
Figure 5. 40KB Image download
Figure 4. 76KB Image download
Figure 3. 137KB Image download
Figure 2. 61KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Robinson TJ, Ruiz-Herrera A, Avise JC: Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. PNAS 2008, 105(38):14477-14481.
  • [2]Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen BX, Hassanin A, Volobouev TV: Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res 2008, 122:41-54.
  • [3]Cazaux B, Catalan J, Veyrunes F, Douzery EJP, Britton-Davidian J: Are ribosomal DNA clusters rearrangement hotspots? A case in the genus Mus (Rodentia, Muridae). BMC Evol Biol 2011, 11:124. BioMed Central Full Text
  • [4]Barker RF, Harberd N, Jarvis MG, Flavell RB: Structure and evolution of the intergenic region in ribosomal DNA repeat units of wheat. J Mol Biol 1988, 210:1-17.
  • [5]Delany ME, Krupkin AB: Molecular characterization of ribosomal gene variation within and among NORs segregating in specialized populations of chicken. Genome 1999, 42:60-71.
  • [6]Carvalho A, Guedes-Pinto H, Lima-Brito J: Physical localization of NORs and ITS length variants in old Portuguese durum wheat cultivars. J Genet 2011, 90(1):95-101.
  • [7]Georgiev O, Karagyozov L: Structure of the intergenic spacer of barley ribosomal DNA repeat units: evidence for concerted evolution. Genetics and Plant Physiology 2012, 2:145-150.
  • [8]Eickbush TH, Eickbush DG: Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 2007, 175:477-485.
  • [9]Raskina Q, Barber JC, Nevo E, Belyayev A: Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogent Genome Res 2008, 120:351.
  • [10]Fagundes V, Yonenaga-Yassuda Y: Evolutionary conversation of whole homeologous chromosome arms in Akodont rodents Bolomys and Akodon (Muridae, Sigmodontinae): maintenance of interstitial telomeric segments (ITS) in recent event of centric fusion. Chromosome Res 1998, 6:643-648.
  • [11]Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y: Chromosomal evolution in the Brazilian lizards of genus Leposomu (Squamata, Gymnophthalmidae) from Amazon and Atlantic rain forests: banding patterns and FISH of telomeric sequences. Hereditas 1999, 131:15-21.
  • [12]Nanda I, Schmid M: Localization of the telomeric (TTAGGG)n sequences in chicken (Gallus domesticus) chromosomes. Cytogenet Cell Genet 1994, 65:190-193.
  • [13]Tsipouri V, Schueler MG, Sufen H, Dutras A, Paks E, Riethman H, Green ED, NISC Comparative Sequencing Program: Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome. Genome Biol 2008, 9:R155. BioMed Central Full Text
  • [14]Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, Marca EL, Díaz LM, Sanz A, Chen SH, Hedges SB: The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 2010, 130–131:1-568.
  • [15]Scacchetti PC, Pansonato-Alves JC, Utsunomia R, Oliveira C, Foresti F: Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical mapping of ribosomal genes and telomeric sequences. Comp Cytogen 2011, 5(3):223-235.
  • [16]Suárez P, Cardozo D, Baldo D, Pereyra MO, Faivovich J, Orrico VGD, Catroli GF, Grabiele M, Bernade PS, Nagamachi CY, Haddad CFB, Pieczarka JC: Chromosome evolution in Dendropsophini (Amphibia, Anura, Hylinae). Cytogenet Genome Res 2013, 141:295-308.
  • [17]Kilburn AE, Shea MJ, Sargent RG, Wilson JH: Insertion of a telomere repeat sequence into a Mammalian gene causes chromosome instability. Mol Cell Biol 2001, 21(1):126.
  • [18]Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E: Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 2004, 14:1704-1710.
  • [19]Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E: Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 2008, 122:219-228.
  • [20]Adegoke JA, Arnason U, Widegren B: Sequence organization and evolution, in all extant whalebone whales, of a satellite DNA with terminal chromosome localization. Chromosoma 1993, 102:382-388.
  • [21]Garrido-Ramos MA, Herrán R, Rejón R, Rejón MR: A satellite DNA of the Sparidae family (Pisces, Perciformes) associated with telomeric sequences. Cytogenet Cell Genet 1998, 83:3-9.
  • [22]Faravelli M, Azzalin CM, Bertoni L, Chernova O, Attolini C, Mondello C, Giulotto E: Molecular organization of internal telomeric sequences in Chinese hamster chromosomes. Gene 2002, 283:11-16.
  • [23]Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK: Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 1990, 99:3-10.
  • [24]Pagnozzi JM, De Jesus Silva MJ, Yonenaga-Yassuda Y: Intraspecific variation in the distribution of the interstitial telomeric (TTAGGG)n sequences in Micoureus demerarae(Marsupialia: Didelphidae). Chromosome Res 2000, 8:585-591.
  • [25]Santini A, Raudsepp T, Chowdhary BP: Interstitial telomeric site and NORs in Hartmann’s zebra (Equus zebra hartmannae) chromosome. Chromosome Res 2002, 10:527-534.
  • [26]Carvalho KA, Garcia PCA, Recco-Pimentel SM: NOR dispersion, telomeric sequence detection in centromeric region and meiotic multivalent configurations in species of the Aplastodiscus albofrenatus group (Anura, Hyldae). Cytogenet Genome Res 2009, 126:359-367.
  • [27]Rovatsos MT, Mrchal JA, Romero-Fernández I, Fernández FJ, Giagia-Athanosopoulou EB, Sánchez A: Rapid, independente, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 2011, 19:869-882.
  • [28]Gruber SL, Narimatsu H, Haddad CFB, Kasahara S: Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae). BMC Genet 2012, 13:28.
  • [29]He L, Liu J, Torres GA, Zhang H, Jiang J, Xie C: Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res 2013, 21:5-13.
  • [30]Weber B, Collins C, Robbins C, Magenis RE, Delaney AD, Gray JW, Hayden MR: Characterization and organization of DNA sequences adjacent to the human telomere associated repeat (TTAGGG)n. Nucleic Acids Res 1990, 18:3353-3361.
  • [31]Azzalin CM, Nergadze SG, Giulotto E: Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 2001, 110:75-82.
  • [32]Ruiz-Herrera A, García F, Azzalin C, Giulotto E, Egozcue J, Ponsa M, Garcia M: Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis(Primates) chromosomes and their implication for chromosome evolution. Hum Genet 2002, 110:578-586.
  • [33]Faivovich J, Haddad CFB, Baêta D, Jungfer KH, Álvares GFRA, Brandão RA, Sheil C, Barrientos LS, Barrio-Amós CL, Cruz CAG, Wheeler WC: The phylogenetic relationships of the charismatic poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics 2010, 25:1-35.
  • [34]Frost DR: Amphibian Species of the World: An online reference. http://research.amnh.org/vz/herpetology/amphibia/ webcite
  • [35]Caramaschi U: Redefinição do grupo de Phyllomedusa hypochondrialis, com redescrição de P. megacephala (Miranda-Ribeiro, 1926), revalidação de P. azurea Cope, 1826 e descrição de uma nova espécie (Amphibia, Anura, Hylidae). Arq Mus Nac 2006, 64:159-179.
  • [36]Barrio-Amorós CL: A new species of Phyllomedusa (Anura: Hylidae: Phyllomedusinae) from northwestern Venezuela. Zootaxa 2006, 1309:55-68.
  • [37]Pombal JP, Haddad CFB: Espécies de Phyllomedusa do grupo bumeisteri do Brasil oriental, com descrição de uma espécie nova (Amphibia, Hylidae). Rev Bras Biol 2006, 52:217-229.
  • [38]Cannatella DC: Leaf-frogs of the Phyllomedusa perinesos group (Anura: Hylidae). Copeia 1982, 3:501-513.
  • [39]Morando M, Hernando A: Localizacióncromosómica de genes ribosomales activos em Phyllomedusa hypochondrialis y P. sauvagii (Anura, Hylidae). Cuad Herpetol 1997, 11:31-36.
  • [40]Barth A, Solé M, Costa MA: Chromosome polymorphism in Phyllomedusa rohdei populations (Anura, Hylidae). J Herpetol 2009, 43:676-679.
  • [41]Paiva CR, Nascimento J, Silva APZ, Bernarde OS, Ananias F: Karyotypes and Ag-NORs in Phyllomedusa camba De La Riva, 1999 and P. rohdei Mertens, 1926 (Anura, Hylidae, Phyllomedusinae): cytotaxonomic considerations. Ital J Zool 2010, 77:116-121.
  • [42]Barth A, Souza VA, Solé M, Costa MA: Molecular cytogenetics of nucleolar organizer regions in Phyllomedusa and Phasmahyla species (Hylidae, Phyllomedusinae): a cytotaxonomic contribution. Gen Mol Res 2013, 12(3):2400-2408.
  • [43]Bruschi DP, Busin CS, Toledo LF, Vasconcellos GA, Strussmann C, Weber LN, Lima AP, Lima JD, Recco-Pimente SM: Evaluation of the taxonomic status of populations assigned to Phyllomedusa hypochondrialis (Anura, Hylidae, Phyllomedusinae) based on molecular, chromosomal, and morphological approach. BMC Genet 2013, 14:70.
  • [44]Gruber SL, Zampieri AP, Haddad CFB, Kasahara S: Cytogenetic analysis of Phyllomedusa distincta Lutz, 1950 (2n = 2x = 26), P. tetraploidea Pombal and Haddad, 1992 (2n = 4x = 52), and their natural triploid hybrids (2n = 3x = 39) (Anura, Hylidae, Phyllomedusinae). BMC Genet 2013, 14:75.
  • [45]Bruschi DP, Busin CS, Siqueira S, Recco-Pimentel SM: Cytogenetic analysis of two species in the Phyllomedusa hypochondrialis group (Anura, Hylidae). Hereditas 2012, 149:34-40.
  • [46]Bogart JP: Evolution of anuran karyotypes. In Evolutionary Biology of Anurans. Edited by Vial JL. Columbia: University of Missouri Press; 1973:337-349.
  • [47]Beçak ML, Denaro L, Beçak W: Polyploidy and mechanisms of karyotypic diversification in Amphibia. Cytogenetics 1970, 9:225-238.
  • [48]Nguyen P, Sahara K, Yoshio A, Marec F: Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 2010, 138:343-354.
  • [49]Britton-Davidian J, Cazaux B, Catalan J: Chromosomal dynamics of nucleolar organizer regions (NORs) in the house mouse: microevolutionary insights. Heredity 2012, 108:68-74.
  • [50]Ventura K, Silva MJJ, Christoff AU, Yonenaga-Yassuda Y: Non-telomeric sites as evidence of chromosomal rearrangement and repetitive (TTAGGG)n arrays in heterochromatic and euchromatic regions in four species of Akodon (Rodentia, Muridae). Cytogenet Genome Res 2006, 115:169-175.
  • [51]Nergadze SG, Santagostino MA, Salzano S, Mondello C, Giulotto E: Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 2007, 8:R260. BioMed Central Full Text
  • [52]Swier VJ, Khan FAA, Baker R: Do Time, Heterochromatin, NORs, or Chromosomal rearrangements correlate with distribution of Interstitial Telomeric Repeats in Sigmodon (Cotton Rats)? J Hered 2012, 103(4):493-502.
  • [53]Tek AL, Jiang J: The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma 2004, 113:77-83.
  • [54]Arnason U, Widegren B: Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus. Chromosoma 1989, 98:323-329.
  • [55]King M, Rofe R: Karyotypic variation in the Australian gecko Phyllodactylus marmoratus (Gray) (Gekkonidae: Reptilia). Chromosoma 1976, 54:75-87.
  • [56]Schmid M: Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 1978, 66:361-368.
  • [57]Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 1972, 83:438-442.
  • [58]Howell WM, Black DA: Controlled silver staining of nucleolar organizer regions with a protective colloidal developer: a -1 step method. Experientia 1980, 36:1014-1015.
  • [59]Viegas-Péquignot E: In situ hybridization to chromosomes with biotinylated probes. In situ Hybridization: a Practical Approach. Edited by Willernson D. Oxford: Oxford University Press; 1992:137-158.
  • [60]Green DM, Sessions SK: Nomenclature for chromosomes. In Amphibian cytogenetics and evolution. Edited by Green DM, Sessions SK. San Diego Academic; 1991:431-432.
  文献评价指标  
  下载次数:52次 浏览次数:10次