期刊论文详细信息
Virology Journal
Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling
Herman van Vlijmen1  Elke Van Craenenbroeck1  Yvan Verlinden1  Liesbeth Van Wesenbeeck1  Maxim Feyaerts1  Ann Verheyen1  Koen Van der Borght1 
[1] Tibotec-Virco, Beerse, Belgium
关键词: Resistance;    Raltegravir;    Linear regression;    Integrase;    Genetic algorithm;    Consensus model;   
Others  :  1152456
DOI  :  10.1186/1743-422X-10-8
 received in 2012-02-13, accepted in 2012-12-28,  发布年份 2013
PDF
【 摘 要 】

Background

Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype.

Methods

We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants.

We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models.

Results

The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%), 143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order model contained 30 single mutations and five mutation pairs (p < 0.01): 143C/R&97A, 155H&97A/151I and 74M&151I. The R2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients.

Conclusions

We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.

【 授权许可】

   
2013 Van der Borght et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406174944350.pdf 2376KB PDF download
Figure 7. 59KB Image download
Figure 6. 36KB Image download
Figure 5. 48KB Image download
Figure 4. 42KB Image download
Figure 3. 107KB Image download
Figure 2. 25KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Adamson CS, Freed EO: Recent progress in antiretrovirals – lessons from resistance. Drug Discov Today 2008, 13:424-432.
  • [2]Flexner C: HIV drug development: the next 25 years. Nat Rev Drug Discov 2007, 6:959-966.
  • [3]Marchand C, Maddali K, Métifiot M, Pommier Y: HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2009, 9:1016-1037.
  • [4]McColl DJ, Chen X: Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 2010, 85:101-118.
  • [5]Hicks C, Gulick RM: Raltegravir: the first HIV type 1 integrase inhibitor. Clin Infect Dis 2009, 48:931-939.
  • [6]Nguyen BY, Isaacs RD, Teppler H, Leavitt RY, Sklar P, Iwamoto M, Wenning LA, Miller MD, Chen J, Kemp R, Xu W, Fromtling RA, Vacca JP, Young SD, Rowley M, Lower MW, Gottesdiener KM, Hazuda DJ: Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium. Ann N Y Acad Sci 2011, 1222:83-89.
  • [7]Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, Foster SA, Hazen RJ, Miki S, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T: In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 2011, 55:813-821.
  • [8]Panel on Antiretroviral Guidelines for Adults and Adolescents, Department of Health and Human Services: Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2011. [http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf webcite]
  • [9]Cortez KJ, Maldarelli F: Clinical management of HIV drug resistance. Viruses 2011, 3:347-378.
  • [10]Vermeiren H, Van Craenenbroeck E, Alen P, Bacheler L, Picchio G, Lecocq P: Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 2007, 145:47-55.
  • [11]Blanco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW: HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis 2011, 203:1204-1214.
  • [12]Métifiot M, Marchand C, Maddali K, Pommier Y: Resistance to integrase inhibitors. Viruses 2010, 2:1347-1366.
  • [13]Van Wesenbeeck L, Rondelez E, Feyaerts M, Verheyen A, Van der Borght K, Smits V, Cleybergh C, De Wolf H, Van Baelen K, Stuyver LJ: Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother 2011, 55:321-325.
  • [14]Verlinden Y, Vermeiren H, Lecocq P, Bacheler L, McKenna P, Vanpachtenbeke M, Horvat LI, Van Houtte M, Stuyver LJ: Assessment of the antivirogram® performance over time including a revised definition of biological test cut-off values. Antivir Ther 2005, 10:S51.
  • [15]FDA: Isentress (raltegravir) drug label. 2009. [http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022145s004lbl.pdf webcite]
  • [16]Holland JH: Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press; 1975.
  • [17]Goldberg DE: Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley; 1989.
  • [18]Trevino V, Falciani F: GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics 2006, 22:1154-1156.
  • [19]Kutner MH, Nachtsheim CJ, Neter J, Li W: Applied Linear Statistical Models. New York: McGraw-Hill; 2004.
  • [20]Jones G, Ledford R, Yu F, Miller M, Tsiang M, McColl DJ: Resistance profile of HIV-1 mutants in vitro selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303). Los Angeles, CA: 14th Conference on Retroviruses and Opportunistic Infections; 2007.
  • [21]McColl DJ, Fransen S, Gupta S, Parkin N, Margot N, Ledford R, Chen J, Chuck S, Cheng AK, Miller D: Resistance and cross-resistance to first generation integrase inhibitors: insights from a Phase II study of elvitegravir (GS-9137). Antivir Ther 2007, 12:S11.
  • [22]Goodman D, Hluhanich R, Waters J, Margot NA, Fransen S, Gupta S, Huang W, Parkin N, Borroto-Esoda K, Svarovskaia ES, Miller MD, McColl DJ: Integrase inhibitor resistance involves complex interactions among primary and secondary resistance mutations: a novel mutation L68V/I associates with E92Q and increases resistance. Antivir Ther 2008, 13:A15.
  • [23]Fransen S, Gupta S, Frantzell A, Petropoulos C, Huang W: HIV-1 mutations at positions 143, 148, and 155 of integrase define different genetic barriers to raltegravir resistance in vitro. Montreal, Canada: 16th Conference on Retroviruses and Opportunistic Infections; 2009.
  • [24]Fransen S, Gupta S, Danovich R, Hazuda D, Miller M, Witmer M, Petropoulos CJ, Huang W: Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J Virol 2009, 83:11440-11446.
  • [25]Steiger JH: Tests for comparing elements of a correlation matrix. Psychol Bull 1980, 87:245-251.
  • [26]Van Baelen K, Rondelez E, Van Eygen V, Ariën K, Clynhens M, Van den Zegel P, Winters B, Stuyver LJ: A combined genotypic and phenotypic human immunodeficiency virus type 1 recombinant virus assay for the reverse transcriptase and integrase genes. J Virol Methods 2009, 161:231-239.
  • [27]Rondelez E, Van Baelen K, Ceccherini-Silberstein F, Van Eygen V, Van den Zegel P, Winters B, Armenia D, Trignetti M, Perno CF, Stuyver LJ: Preliminary biological cutoffs for GS-9137 and MK-0518 integrase inhibitors derived from clonal phenotypic analysis. Budapest, Hungary: 6th European HIV Resistance Workshop; 2008.
  • [28]Van der Borght K, Van Craenenbroeck E, Lecocq P, Van Houtte M, Van Kerckhove B, Bacheler L, Verbeke G, van Vlijmen H: Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations. BMC Bioinformatics 2011, 12:386. BioMed Central Full Text
  • [29]Leardi R, Boggia R, Terrile M: Genetic algorithms as a strategy for feature selection. J Chemom 1992, 6:267-281.
  • [30]Sudjianto A, Wasserman GS, Sudarbo H: Genetic subsets regression. Computers Ind Engng 1996, 30:839-849.
  • [31]Reigadas S, Anies G, Masquelier B, Calmels C, Stuyver LJ, Parissi V, Fleury H, Andreola ML: The HIV-1 integrase mutations Y143C/R are an alternative pathway for resistance to Raltegravir and impact the enzyme functions. PLoS One 2010, 5:e10311.
  • [32]Quercia R, Dam E, Perez-Bercoff D, Clavel F: Selective-advantage profile of human immunodeficiency virus type 1 integrase mutants explains in vivo evolution of raltegravir resistance genotypes. J Virol 2009, 83:10245-10249.
  • [33]Ceccherini-Silberstein F, Armenia D, D’Arrigo R, Vandenbroucke I, Van Marck H, Van Baelen K, Van Wesenbeeck L, Rizzardini G, Lo Caputo S, Narciso A, Stuyver L, Perno CF: Primary mutations associated with resistance to raltegravir are not detectable by pyrosequencing in integrase-inhibitors naïve patients. San Francisco, CA: 17th Conference on Retroviruses and Opportunistic Infections; 2010.
  • [34]Delelis O, Thierry S, Subra F, Simon F, Malet I, Alloui C, Sayon S, Calvez V, Deprez E, Marcelin AG, Tchertanov L, Mouscadet JF: Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrob Agents Chemother 2010, 54:491-501.
  • [35]Huang W, Fransen S, Frantzell A, Petropoulos C: Identification of alternative amino acid substitutions at HIV-1 integrase codon 143 that confer reduced susceptibility to RAL. Boston, MA: 18th Conference on Retroviruses and Opportunistic Infections; 2011.
  • [36]Tsurutani N, Kubo M, Maeda Y, Ohashi T, Yamamoto N, Kannagi M, Masuda T: Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 2000, 74:4795-4806.
  • [37]Reigadas S, Masquelier B, Calmels C, Laguerre M, Lazaro E, Vandenhende M, Neau D, Fleury H, Andréola ML: Structure-analysis of the HIV-1 integrase Y143C/R raltegravir resistance mutation in association with the secondary mutation T97A. Antimicrob Agents Chemother 2011, 55:3187-3194.
  • [38]Wiesmann F, Braun P, Van Houtte M, Voigt E, Ehret R, Van Wesenbeeck L, Knechten H: HIV-1 integrase mutation E157Q has low impact on integrase inhibitor resistance: a case report. Rev Antivir Ther Infect Dis 2010, 1:33.
  • [39]Verbeke G, Molenberghs G: Linear mixed models for longitudinal data. New York: Springer; 2000.
  文献评价指标  
  下载次数:90次 浏览次数:37次