Orphanet Journal of Rare Diseases | |
Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: overlapping effects or limited therapeutic opportunity? | |
Xavier Navarro2  Rosario Osta1  Mercé Pallás4  Marta Morell3  Jaume del Valle3  Renzo Mancuso3  | |
[1] Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain;Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain;Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain;Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBERNED, Barcelona, Spain | |
关键词: Combined therapy; PRE-084; Sigma-1 receptor; SOD1G93A mice; AMPK; Sirtuin 1; Resveratrol; Amyotrophic lateral sclerosis; Motoneuron disease; | |
Others : 861689 DOI : 10.1186/1750-1172-9-78 |
|
received in 2014-01-06, accepted in 2014-05-19, 发布年份 2014 | |
【 摘 要 】
Background
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by the loss of motoneurons (MNs) in the spinal cord, brainstem and motor cortex, causing progressive paralysis and death. Nowadays, there is no effective therapy and most patients die 2–5 years after diagnosis. Sigma-1R is a transmembrane protein highly expressed in the CNS and specially enriched in MNs. Mutations on the Sigma-1R leading to frontotemporal lobar degeneration-ALS were recently described in human patients. We previously reported the therapeutic role of the selective sigma-1R agonist 2-(4-morpholi-nethyl)1-phenylcyclohexanecarboxylate (PRE-084) in SOD1G93A ALS mice, that promoted spinal MN preservation and extended animal survival by controlling NMDA receptor calcium influx. Resveratrol (RSV, trans-3,4′,5-trihydroxystilbene) is a natural polyphenol with promising neuroprotective effects. We recently found that RSV administration to SOD1G93A mice preserves spinal MN function and increases mice survival. These beneficial effects were associated to activation of Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK) pathways, leading to the modulation of autophagy and an increase of mitochondrial biogenesis. The main goal of this work was to assess the effect of combined RSV and PRE-084 administration in SOD1G93A ALS mice.
Methods
We determined the locomotor performance of the animals by rotarod test and evaluated spinal motoneuron function using electrophysiological tests.
Results
RSV plus PRE-084 treatment from 8 weeks of age significantly improved locomotor performance and spinal MN function, accompanied by a significant reduction of MN degeneration and an extension of mice lifespan. In agreement with our previous findings, there was an induction of PKC-specific phosphorylation of the NMDA-NR1 subunit and an increased expression and activation of Sirt1 and AMPK in the ventral spinal cord of treated SOD1G93A animals.
Conclusions
Although combined PRE and RSV treatment significantly ameliorated SOD1G93A mice, it did not show a synergistic effect compared to RSV-only and PRE-084-only treated groups.
【 授权许可】
2014 Mancuso et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725003330190.pdf | 1257KB | download | |
116KB | Image | download | |
110KB | Image | download | |
201KB | Image | download | |
30KB | Image | download | |
66KB | Image | download | |
68KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Wijesekera LC, Leigh PN: Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009, 4:3. BioMed Central Full Text
- [2]Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrel JR, Zoing MC: Amyotrophic lateral sclerosis. The Lancet 2011, 377:942-55.
- [3]Rosen DR: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 364:362.
- [4]McGoldrick P, Joyce PI, Fisher EMC, Greensmith L: Rodent models of amyotrophic lateral sclerosis. BBA - Molecular Basis of Disease 1832, 2013:1421-1436.
- [5]Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW: Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995, 92:689-93.
- [6]Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX: Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 1994, 264:1772-5.
- [7]Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, Brown RH: Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010, 13:1396-403.
- [8]Hayashi T, Su T-P: Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007, 131:596-610.
- [9]Alonso G, Phan V-L, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T: Immunocytochemical localization of the sigma1 receptor in the adult rat central nervous system. Neuroscience 2000, 97:155-70.
- [10]Palacios G, Muro A, Vela JM, Molina-Holgado E, Guitart X, Ovalle S, Zamanillo D: Immunohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system. Brain Res 2003, 961:92-9.
- [11]Penas C, Pascual-Font A, Mancuso R, Forés J, Casas C, Navarro X: Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. J Neurotrauma 2011, 28:831-40.
- [12]Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE: The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience 2010, 167:247-55.
- [13]Hall AA, Herrera Y, Ajmo CT Jr, Cuevas J, Pennypacker KR: Sigma receptors suppress multiple aspects of microglial activation. Glia 2009, 57:744-54.
- [14]Zhang X-J, Liu L-L, Jiang S-X, Zhong Y-M, Yang X-L: Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience 2011, 177:12-22.
- [15]Aydar E, Palmer CP, Klyachko VA, Jackson MB: The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002, 34:399-410.
- [16]Zhang H, Cuevas J: σ Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons. J Pharmacol Exp Ther 2005, 313:1387-96.
- [17]Maurice T, Su T-P: The pharmacology of sigma-1 receptors. Pharmacol Ther 2009, 124:195-206.
- [18]Al-Saif A, Al-Mohanna F, Bohlega S: A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol 2011, 70:913-9.
- [19]Allahtavakoli M, Jarrott B: Sigma-1 receptor ligand PRE-084 reduced infarct volume, neurological deficits, pro-inflammatory cytokines and enhanced anti-inflammatory cytokines after embolic stroke in rats. Brain Res Bull 2011, 85:219-24.
- [20]Tuerxun T, Numakawa T, Adachi N, Kumamaru E, Kitazawa H, Kudo M, Kanugi H: SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett 2010, 469:303-8.
- [21]Ajmo CT Jr, Vernon DOL, Collier L, Pennypacker KR, Cuevas J: Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 2006, 3:89-98.
- [22]Mancuso R, Oliván S, Rando A, Casas C, Osta R, Navarro X: Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS Mice. Neurotherapeutics 2012, 9:814-26.
- [23]Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegrí C, Sanfeliu C, Camins A, Pallás M, del Valle J: Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr) 2013, 35:1851-65.
- [24]Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T: Resveratrol-activated AMPK/SIRT1/Autophagy in cellular models of parkinson’s disease. Neurosignals 2011, 19:163-74.
- [25]Liu C, Shi Z, Fan L, Zhang C, Wang K, Wang B: Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 2011, 1374:100-9.
- [26]Wang L-M, Wang Y-J, Cui M, Luo W-J, Wang X-J, Barber PA, Chen ZY: A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci 2013, 37:1669-81.
- [27]Wang J, Zhang Y, Tang L, Zhang N, Fan D: Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011, 503:250-5.
- [28]Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM: SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007, 26:3169-79.
- [29]Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JD, Hubbard BP, Varela AT, Davis JG, Veramini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, del Cabo R, Baur JA, Sinclair DA: SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism 2012, 15:675-90.
- [30]Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussing R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148:421-33.
- [31]Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T: A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008, 105:3374-9.
- [32]Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Núñez O, Pallás M, Portero-Otin M, Osta R, Navarro X: Resveratrol improves motoneuron function and extends survival in SOD1G93A ALS mice. Neutotherapeutics 2014, 11:419-32.
- [33]Ferraiuolo L, Higginbottom A, Heath PR, Barber SC, Greenald D, Kirby J, Shaw PJ: Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 2011, 134:2627-41.
- [34]Pasinelli P, Brown RH: Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006, 7:710-23.
- [35]Rege SD, Kumar S, Wilson DN, Tamura L, Geetha T, Mathews ST, Huggins KW, Broderick TL, Babu JR: Resveratrol protects the brain of obese mice from oxidative damage. Oxid Med Cell Long 2013, 4:1-7.
- [36]Mancuso R, Santos-Nogueira E, Osta R, Navarro X: Electrophysiological analysis of a murine model of motoneuron disease. Clin Neurophysiol 2011, 122:1660-70.
- [37]Navarro X, Udina E: Methods and protocols in peripheral nerve regeneration experimental research. Electrophysiological evaluation. Int Rev Neurobiol 2009, 87:105-26.
- [38]Brooks SP, Dunnett SB: Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009, 10:519-29.
- [39]Mancuso R, Oliván S, Osta R, Navarro X: Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res 2011, 1406:65-73.
- [40]Penas C, Casas C, Robert I, Forés J, Navarro X: Cytoskeletal and activity-related changes in spinal motoneurons after root avulsion. J Neurotrauma 2009, 26:763-79.
- [41]Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD: Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 2004, 185:232-40.
- [42]McHanwell S, Biscoe TJ: The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond, B, Biol Sci 1981, 293:477-508.
- [43]Guzmán-Lenis M-S, Navarro X, Casas C: Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons. Neuroscience 2009, 162:31-8.
- [44]Grosskreutz J, Van Den Bosch L, Keller BU: Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 2010, 47:165-74.
- [45]Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W: The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. BBA - Molecular Basis of Disease 2006, 1762:1068-82.
- [46]Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH: The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1994, 36:846-58.
- [47]Balasuriya D, Stewart AP, Edwardson JM: The σ-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 2013, 33:18219-24.
- [48]Amer MS, McKeown L, Tumova S, Liu R, Seymour VAL, Wilson LA, Naylor J, Greenhalgh K, Hou B, Majeed Y, Turner P, Sedo A, O'Regan DJ, Li J, Bon RS, Porter KE, Beech DJ: Inhibition of endothelial cell Ca2+ entry and transient receptor potential channels by Sigma-1 receptor ligands. British J Pharmacol 2013, 168:1445-55.
- [49]Kourrich S, Hayashi T, Chuang J-Y, Tsai S-Y, Su T-P, Bonci A: Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 2013, 152:236-47.
- [50]Mavlyutov TA, Epstein ML, Verbny YI, Huerta MS, Zaitoun I, Ziskind-Conhaim L, Ruoho AE: Lack of sigma-1 receptor exacerbates ALS progression in mice. Neuroscience 2013, 240:129-34.
- [51]Mori T, Hayashi T, Hayashi E, Su T-P: Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS ONE 2013, 8:e76941.
- [52]Hayashi T, Hayashi E, Fujimoto M, Sprong H, Su T-P: The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones. J Biol Chem 2012, 287:43156-69.
- [53]Marriott K-SC, Prasad M, Thapliyal V, Bose HS: σ-1 receptor at the mitochondrial-associated endoplasmic reticulum membrane is responsible for mitochondrial metabolic regulation. J Pharmacol Exp Ther 2012, 343:578-86.
- [54]Herskovits AZ, Guarente L: Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 2013, 23:746-58.
- [55]Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M, Shindler KS: Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol 2012, 3:84.
- [56]Nimmagadda VK, Bever CT, Vattikunta NR, Talat S, Ahmad V, Nagalla NK, Trisler D, Judge SIV, Royal W, Chandrasekaran K, Russel JW, Makar TP: Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J Immunol 2013, 190:4595-607.
- [57]Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL: ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet 2010, 20:261-70.
- [58]Albani D, Polito L, Signorini A, Forloni G: Neuroprotective properties of resveratrol in different neurodegenerative disorders. BioFactors 2010, 36:370-6.
- [59]Jin F, Wu Q, Lu Y-F, Gong Q-H, Shi J-S: Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. Eur J Pharmacol 2008, 600:78-82.
- [60]Araki T, Sasaki Y, Milbrandt J: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-3.
- [61]Zhang F, Liu J, Shi J-S: Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 2010, 636:1-7.
- [62]Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF: Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 2005, 5:185-93.
- [63]Candelario-Jalil E, de Oliveira A, Gräf S, Bhatia HS, Hüll M, Muñoz E, Fiebich BL: Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflamm 2007, 4:25. BioMed Central Full Text
- [64]Meng X-L, Yang JY, Chen G-L, Wang L-H, Zhang L-J, Wang S, Li J, Wu CF: Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem Biol Interact 2008, 174:51-9.
- [65]Wang FM, Galson DL, Roodman GD, Ouyang H: Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp Hematol 2011, 39:999-1006.
- [66]Azzouz M, Leclerc N, Gurney M, Warter JM, Poindron P, Borg J: Progressive motor neuron impairment in an animal model of familial amyotrophic lateral sclerosis. Muscle Nerve 1997, 20:45-51.
- [67]Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J, Al Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA: Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 2008, 9:4-15.