期刊论文详细信息
Molecular Pain
Alleviation of behavioral hypersensitivity in mouse models of inflammatory pain with two structurally different casein kinase 1 (CK1) inhibitors
Atsuro Miyata3  Masatoshi Hagiwara1  Megumu Yoshimura4  Tsutomu Tanabe2  Toshihide Asada3  Daisuke Kawamoto3  Isao Kii1  Masayasu Toyomoto1  Eri Sakurai2  Takashi Kurihara2 
[1] Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan;Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan;Graduate School of Health Sciences, Kumamoto Health Science University, 325 Izumi-machi, Kumamoto 861-5598, Japan
关键词: Whole-cell patch-clamp;    Hyperalgesia;    CFA;    Complete Freund’s adjuvant;    Carrageenan;    Allodynia;   
Others  :  861773
DOI  :  10.1186/1744-8069-10-17
 received in 2013-12-02, accepted in 2014-03-02,  发布年份 2014
PDF
【 摘 要 】

Background

The phylogenetically highly conserved CK1 protein kinases consisting of at least seven isoforms form a distinct family within the eukaryotic protein kinases. CK1 family members play crucial roles in a wide range of signaling activities. However, the functional role of CK1 in somatosensory pain signaling has not yet been fully understood. The aim of this study was to clarify the role of CK1 in the regulation of inflammatory pain in mouse carrageenan and complete Freund’s adjuvant (CFA) models.

Results

We have used two structurally different CK1 inhibitors, TG003 and IC261. TG003, which was originally identified as a cdc2-like kinase inhibitor, had potent inhibitory effects on CK1 isoforms in vitro and in cultured cells. Intrathecal injection of either TG003 (1-100 pmol) or IC261 (0.1-1 nmol) dose-dependently decreased mechanical allodynia and thermal hyperalgesia induced by carrageenan or CFA. Bath-application of either TG003 (1 μM) or IC261 (1 μM) had only marginal effects on spontaneous excitatory postsynaptic currents (sEPSCs) recorded in the substantia gelatinosa neurons of control mice. However, both compounds decreased the frequency of sEPSCs in both inflammatory pain models.

Conclusions

These results suggest that CK1 plays an important pathophysiological role in spinal inflammatory pain transmission, and that inhibition of the CK1 activity may provide a novel strategy for the treatment of inflammatory pain.

【 授权许可】

   
2014 Kurihara et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725003940165.pdf 1482KB PDF download
88KB Image download
82KB Image download
84KB Image download
83KB Image download
93KB Image download
117KB Image download
53KB Image download
【 图 表 】

【 参考文献 】
  • [1]Kuner R: Central mechanisms of pathological pain. Nat Med 2010, 16:258-1266.
  • [2]Dawes JM, Anderson DA, Bennett DLH, Bevan S, McMahon SB: Inflammatory mediators and modulators of pain. In Wall and Melzack’s Textbook of Pain. 6th edition. Edited by McMahon SB, Koltzenburg M, Tracy I, Turk DC. Philadelphia, PA: Elsevier; 2013:48-67.
  • [3]Sandkühler J: Spinal cord plasticity and pain. In Wall and Melzack’s Textbook of Pain. 6th edition. Edited by McMahon SB, Koltzenburg M, Tracy I, Turk DC. Philadelphia, PA: Elsevier; 2013:94-110.
  • [4]Gross SD, Anderson RA: Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 1998, 10:699-711.
  • [5]Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M: The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005, 17:675-689.
  • [6]Cheong JK, Virshup DM: Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol 2011, 43:465-469.
  • [7]Perez DI, Gil C, Martinez A: Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 2011, 31:924-954.
  • [8]Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science 2002, 298:1912-1934.
  • [9]Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G: The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci U S A 2004, 101:11707-11712.
  • [10]Mashhoon N, DeMaggio A, Tereshko V, Bergmeier SC, Egli M, Hoekstra MF, Kuret J: Crystal structure of a conformation-selective casein kinase-1 inhibitor. J Biol Chem 2000, 275:20052-20060.
  • [11]Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH, Virshup DM: IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ϵ and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene 2011, 30:2558-2569.
  • [12]Sakurai E, Kurihara T, Kouchi K, Saegusa H, Zong S, Tanabe T: Upregulation of casein kinase 1ϵ in dorsal root ganglia and spinal cord after mouse spinal nerve injury contributes to neuropathic pain. Mol Pain 2009, 5:74. BioMed Central Full Text
  • [13]Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, Koizumi T, Sumi K, Yomoda J, Murray MV, Kimura H, Furuichi K, Shibuya H, Krainer AR, Suzuki M, Hagiwara M: Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 2004, 279:24246-24254.
  • [14]Nishida A, Kataoka N, Takeshima Y, Yagi M, Awano H, Ota M, Itoh K, Hagiwara M, Matsuo M: Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2011, 2:308.
  • [15]Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo SH, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR: CKI ϵ/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 2009, 106:15744-15749.
  • [16]Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson J: Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotech 2011, 29:1039-1046.
  • [17]Kurihara T, Sakurai E, Asada T, Miyata A, Tanabe T: Activation of casein kinase 1δ/ϵ in dorsal root ganglia and spinal cord contributes to behavioral hypersensitivity induced by inflammation in mice [abstract]. J Pharmacol Sci 2011, 115(Suppl. 1):254P.
  • [18]Ebisawa T: Circadian rhythm in the CNS and peripheral clock disorders: Human sleep disorders and clock genes. J Pharmacol Sci 2007, 103:150-154.
  • [19]Akashi M, Tsuchiya Y, Yoshino T, Nishida E: Control of intracellular dynamics of mammalian period proteins by casein kinase 1ϵ (CK1ϵ) and CK1δ in culture cells. Mol Cell Biol 2002, 22:1693-1703.
  • [20]Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, St Germain K, Schaeffer E, Tate B, Sprouse J: An inhibitor of casein kinase 1ϵ induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 2007, 322:730-738.
  • [21]Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62:96-108.
  • [22]Yoshimura M, Jessell TM: Amino-acid mediated EPSPs at primary afferent synapses with substantia gelatinosa neurons in the rat spinal cord. J Physiol (Lond) 1990, 430:315-335.
  • [23]Yanagisawa Y, Furue H, Kawamata T, Uta D, Yamamoto J, Furuse S, Katafuchi T, Imoto K, Iwamoto Y, Yoshimura M: Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain 2010, 6:38. BioMed Central Full Text
  • [24]Willis WD Jr, Coggeshall RE: Sensory mechanisms of the spinal cord. Volume 1. 3rd edition. New York: Kluwer Academic/Plenum Publishers; 2004.
  • [25]Todd AJ, Koerber HR: Neuroanatomical substrates of spinal nociception. In Wall and Melzack’s Textbook of Pain. 6th edition. Edited by McMahon SB, Koltzenburg M, Tracy I, Turk DC. Philadelphia, PA: Elsevier; 2013:77-93.
  • [26]Latremoliere A, Woolf CJ: Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain 2009, 10:895-926.
  • [27]Ji R-R, Kohno T, Moore KA, Woolf CJ: Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003, 26:696-705.
  • [28]Park C-K, Xu Z-Z, Liu T, Lü N, Serhan CN, Ji R-R: Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct role of Resolvin D1, D2, and E1. J Neurosci 2011, 31:18433-18438.
  • [29]Yang K, Kumamoto E, Furue H, Yoshimura M: Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 1998, 255:135-138.
  • [30]Engelman HS, MacDermott AB: Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 2004, 5:135-145.
  • [31]Kawasaki Y, Zhang L, Cheng J-K, Ji R-R: Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α, in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28:5189-5194.
  • [32]Xu Z-Z, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji R-R: Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010, 16:592-597.
  • [33]Müller F, Heinke B, Sandkühler J: Reduction of glycine receptor-mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation. Neuroscience 2003, 122:799-805.
  • [34]Yang K, Takeuchi K, Wei F, Dubner R, Ren K: Activation of group I mGlu receptors contributes to facilitation of NMDA receptor membrane current in spinal dorsal horn neurons after hind paw inflammation in rats. Eur J Pharmacol 2011, 670:509-518.
  • [35]Li J, Baccei ML: Excitatory synapses in the rat superficial dorsal horn are strengthened following peripheral inflammation during early postnatal development. Pain 2009, 143:56-64.
  • [36]Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M: Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol 2007, 581:603-618.
  • [37]Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ: Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2010, 151:475-488.
  • [38]Pyle RA, Schivell AE, Hidaka H, Bajjalieh SM: Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J Biol Chem 2000, 275:17195-17200.
  • [39]Takamori S, Holt M, Stenius K, Lemke E, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller S, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R: Molecular anatomy of a trafficking organelle. Cell 2006, 127:831-846.
  • [40]Wolff S, Stöter M, Giamas G, Piesche M, Henne-Bruns D, Banting G, Knippschild U: Casein kinase 1 delta (CK1δ) interacts with the SNARE associated protein snapin. FEBS Lett 2006, 580:6477-6484.
  • [41]Löhler J, Hirner H, Schmidt B, Kramer K, Fischer D, Thal DR, Leithäuser F, Knippschild U: Immunohistochemical characterisation of cell-type specific expression of CK1δ in various tissues of young adult BALB/c mice. PLoS ONE 2009, 4:e4174.
  • [42]Utz CA, Hirner H, Blatz A, Hillenbrand A, Schmidt B, Deppert W, Henne-Bruns D, Fischer D, Thal DR, Leithӓuser F, Knippschild U: Analysis of cell type-specific expression of CK1ϵ in various tissues of young adult BALB/c mice and in mammary tumors of SV40 T-Ag-transgenic mice. J Histochem Cytochem 2010, 58:1-15.
  • [43]Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR: Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 1989, 77:61-68.
  • [44]Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM: Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 2005, 102:5679-5684.
  • [45]International Association for the Study of Pain: Animal models of pain and ethics of animal experimentation. In Core Curriculum for Professional Education in Pain. Edited by Fields HL. Seattle: IASP Press; 1995:111-112.
  • [46]Kayser V, Guilbaud G: Local and remote modifications of nociceptive sensitivity during carrageenan-induced inflammation in the rat. Pain 1987, 28:99-107.
  • [47]Iadarola MJ, Brady LS, Draisci G, Dubner R: Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 1988, 45:313-326.
  • [48]Stein C, Millan MJ, Herz A: Unilateral inflammation of the hind paw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 1988, 31:445-451.
  • [49]Sammons MJ, Raval P, Davey PT, Rogers D, Parsons AA, Bingham S: Carrageenan-induced thermal hyperalgesia in the mouse: role of nerve growth factor and the mitogen-activated protein kinase pathway. Brain Res 2000, 876:48-54.
  • [50]Hylden JLK, Wilcox GL: Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980, 67:313-316.
  • [51]Chergui K, Svenningsson P, Greengard P: Physiological role for casein kinase 1 in glutamatergic synaptic transmission. J Neurosci 2005, 25:6601-6609.
  • [52]Yoshimura M, Nishi S: Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents. Neuroscience 1993, 53:519-526.
  文献评价指标  
  下载次数:47次 浏览次数:16次