Virology Journal | |
Development of kinomic analyses to identify dysregulated signaling pathways in cells expressing cytoplasmic PrP | |
Luis M Schang2  Xavier Roucou1  Guillaume Tremblay1  Catherine Grenier1  Cathy Appanah3  Rory H Shott3  | |
[1] Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5 N4, Canada;Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada;Department of Biochemistry and Centre for Prions and Protein Folding Diseases (CPPFD), University of Alberta, Edmonton, AB T6G 2E1, Canada | |
关键词: eIF4B; p70S6K; Akt; Multiplex Western blots; Protein kinase; Kinomics; Neurotoxicity; Cytoplasmic PrP; Prion disease; | |
Others : 1148247 DOI : 10.1186/1743-422X-11-175 |
|
received in 2014-06-05, accepted in 2014-09-26, 发布年份 2014 | |
【 摘 要 】
Background
Dysregulated protein kinase signaling is involved in the pathogenesis of many chronic diseases. However, the dysregulated signaling pathways critical to prion pathogenesis remain incompletely characterized. Global analyses of signaling pathways may be useful to better characterize these pathways. We therefore set out to develop such global assays. To this end, we used as a model cytoplasmic mutants of the cellular prion protein (PrPC), which are toxic to N2a neuroblastoma cells. We tested the global assays for their sensitivity to detect changes in signaling pathways in cells expressing cytoplasmic PrP mutants.
Methods
We developed a targeted proteomics (kinomics) approach using multiplex Western blots to identify signaling pathways dysregulated in chronic neurological pathologies. We tested the approach for its potential ability to detect signaling changes in N2a cells expressing cytoplasmic PrP mutants.
Results
Multiplex Western blots were designed to quantitate the expression levels of 137 protein kinases in a single membrane and using only 1.2 mg of sample. The response of the blots was sensitive and linear to changes of 6% in protein levels. Hierarchical and functional clustering of the relative expression levels identified an mTOR signaling pathway as potentially dysregulated in N2a cells expressing cytoplasmic PrP. The mTOR signaling pathway regulates global protein synthesis, which is inhibited in cells expressing cytoplasmic PrP. The levels of proteins involved in the Akt1/p70S6K branch of mTOR signaling changed in synchrony with time of cytoplasmic PrP expression. Three kinases in this pathway, Akt, p70S6K, and eIF4B were in their inactive states, as evaluated by phosphorylation of their regulatory sites.
Conclusion
The results presented are consistent with the previously reported inhibition of Akt/p70S6K/eIF4B signaling as mediating pathogenesis of cytoplasmic PrP. We conclude that the kinomic analyses are sensitive and specific to detect signaling pathways dysregulated in a simple in vitro model of PrP pathogenesis.
【 授权许可】
2014 Shott et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150404113820649.pdf | 3062KB | download | |
Figure 10. | 71KB | Image | download |
Figure 9. | 89KB | Image | download |
Figure 8. | 69KB | Image | download |
Figure 7. | 82KB | Image | download |
Figure 6. | 82KB | Image | download |
Figure 5. | 151KB | Image | download |
Figure 4. | 191KB | Image | download |
Figure 3. | 185KB | Image | download |
Figure 2. | 36KB | Image | download |
Figure 1. | 73KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Martin L, Latypova X, Wilson C, Magnaudeix A, Perrin M, Yardin C, Terro F: Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 2013, 12:289-309.
- [2]Wood-Kaczmar A, Gandhi S, Wood N: Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 2006, 12:521-528.
- [3]Kinase-Disease association. [http://www.cellsignal.com/common/content/content.jsp?id=science-tables-kinase-disease webcite]
- [4]Knight Z, Lin H, Shokat K: Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 2010, 10:130-137.
- [5]Cohen P, Alessi D: Kinase drug discovery–what’s next in the field? ACS Chem Biol 2013, 8:96-104.
- [6]Clinical Trials of Protein Kinase Inhibitors. [http://clinicaltrials.gov/ct2/results?term=protein+kinase+inhibitor&Search=Search webcite]
- [7]Protein Kinase Inhibitors in Oncology Drug Pipeline Update 2014. 2014. [http://www.researchandmarkets.com/reports/1196697/protein_kinase_inhibitors_in_oncology_drug webcite]
- [8]Fabbro D, Cowan-Jacob S, Mobitz H, Martiny-Baron G: Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 2012, 795:1-34.
- [9]Bamborough P: System-based drug discovery within the human kinome. Expert Opin Drug Discov 2012, 7:1053-1070.
- [10]Colby D, Prusiner S: Prions. Cold Spring Harb Perspect Biol 2011, 3:a006833.
- [11]Prusiner S: Prions. Proc Natl Acad Sci U S A 1998, 95:13363-13383.
- [12]Baeten L, Powers B, Jewell J, Spraker T, Miller M: A natural case of chronic wasting disease in a free-ranging moose (Alces alces shirasi). J Wildl Dis 2007, 43:309-314.
- [13]Schwarz A, Burwinkel M, Riemer C, Schultz J, Baier M: Unchanged scrapie pathology in brain tissue of tyrosine kinase Fyn-deficient mice. Neurodegener Dis 2004, 1:266-268.
- [14]Moreno J, Radford H, Peretti D, Steinert J, Verity N, Martin M, Halliday M, Morgan J, Dinsdale D, Ortori C, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR: Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 2012, 485:507-511.
- [15]Arsenault R, Li Y, Potter A, Griebel P, Kusalik A, Napper S: Induction of ligand-specific PrP (C) signaling in human neuronal cells. Prion 2012, 6:477-488.
- [16]Yun S, Ertmer A, Flechsig E, Gilch S, Riederer P, Gerlach M, Schatzl H, Klein M: The tyrosine kinase inhibitor imatinib mesylate delays prion neuroinvasion by inhibiting prion propagation in the periphery. J Neurovirol 2007, 13:328-337.
- [17]Nordstrom E, Fisone G, Kristensson K: Opposing effects of ERK and p38-JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J 2009, 23:613-622.
- [18]Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schätzl H, Ertmer A: Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 2009, 5:361-369.
- [19]Nordstrom E, Luhr K, Ibanez C, Kristensson K: Inhibitors of the mitogen-activated protein kinase kinase 1/2 signaling pathway clear prion-infected cells from PrPSc. J Neurosci 2005, 25:8451-8456.
- [20]Ertmer A, Gilch S, Yun S, Flechsig E, Klebl B, Stein-Gerlach M, Klein M, Schatzl H: The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem 2004, 279:41918-41927.
- [21]Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl H: Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 2009, 109:25-34.
- [22]Allard E, Grujic M, Fisone G, Kristensson K: Prion formation correlates with activation of translation-regulating protein 4E-BP and neuronal transcription factor Elk1. Neurobiol Dis 2013, 58:116-122.
- [23]Collinge J, Palmer M, Sidle K, Gowland I, Medori R, Ironside J, Lantos P: Transmission of fatal familial insomnia to laboratory animals. Lancet 1995, 346:569-570.
- [24]Medori R, Montagna P, Tritschler H, LeBlanc A, Cortelli P, Tinuper P, Lugaresi E, Gambetti P: Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology 1992, 42:669-670.
- [25]Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A: Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 1996, 379:339-343.
- [26]Mallucci G, Dickinson A, Linehan J, Klohn P, Brandner S, Collinge J: Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 2003, 302:871-874.
- [27]Stahl N, Borchelt D, Hsiao K, Prusiner S: Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987, 51:229-240.
- [28]Baldwin M, Burlingame A, Prusiner S: Mass spectrometric analysis of a GPI-anchored protein: the scrapie prion protein. Trends Anal Chem 1993, 12:239-248.
- [29]Drisaldi B, Stewart R, Adles C, Stewart L, Quaglio E, Biasini E, Fioriti L, Chiesa R, Harris D: Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 2003, 278:21732-21743.
- [30]Rane N, Yonkovich J, Hegde R: Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J 2004, 23:4550-4559.
- [31]Levine C, Mitra D, Sharma A, Smith C, Hegde R: The efficiency of protein compartmentalization into the secretory pathway. Mol Biol Cell 2005, 16:279-291.
- [32]Ma J, Lindquist S: Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 2001, 98:14955-14960.
- [33]Ma J, Lindquist S: Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 2002, 298:1785-1788.
- [34]Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A: Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 2001, 20:5383-5391.
- [35]Lund C, Olsen C, Skogtvedt S, Tveit H, Prydz K, Tranulis M: Alternative translation initiation generates cytoplasmic sheep prion protein. J Biol Chem 2009, 284:19668-19678.
- [36]Rane N, Kang S, Chakrabarti O, Feigenbaum L, Hegde R: Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev Cell 2008, 15:359-370.
- [37]Bailly Y, Haeberle A, Blanquet-Grossard F, Chasserot-Golaz S, Grant N, Schulze T, Bombarde G, Grassi J, Cesbron J, Lemaire-Vieille C: Prion protein (PrPc) immunocytochemistry and expression of the green fluorescent protein reporter gene under control of the bovine PrP gene promoter in the mouse brain. J Comp Neurol 2004, 473:244-269.
- [38]Barmada S, Piccardo P, Yamaguchi K, Ghetti B, Harris D: GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol Dis 2004, 16:527-537.
- [39]Mironov AJ, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson R, Burton D, DeArmond S, Prusiner S, Peters P: Cytosolic prion protein in neurons. J Neurosci 2003, 23:7183-7193.
- [40]Norstrom EM, Ciaccio MF, Rassbach B, Wollmann R, Mastrianni JA: Cytosolic prion protein toxicity is independent of cellular prion protein expression and prion propagation. J Virol 2007, 81:2831-2837.
- [41]Hegde R, Rane N: Prion protein trafficking and the development of neurodegeneration. Trends Neurosci 2003, 26:337-339.
- [42]Ma J, Wollmann R, Lindquist S: Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 2002, 298:1781-1785.
- [43]Goggin K, Beaudoin S, Grenier C, Brown A, Roucou X: Prion protein aggresomes are poly(A) + ribonucleoprotein complexes that induce a PKR-mediated deficient cell stress response. Biochim Biophys Acta 2008, 1783:479-491.
- [44]Rambold A, Miesbauer M, Rapaport D, Bartke T, Baier M, Winklhofer K, Tatzelt J: Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP. Mol Biol Cell 2006, 17:3356-3368.
- [45]Zhang J, Wang K, Guo Y, Shi Q, Tian C, Chen C, Gao C, Zhang B, Dong X: Heat shock protein 70 selectively mediates the degradation of cytosolic PrPs and restores the cytosolic PrP-induced cytotoxicity via a molecular interaction. Virol J 2012, 9:303. BioMed Central Full Text
- [46]Martin J, Masri J, Bernath A, Nishimura R, Gera J: Hsp70 associates with Rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun 2008, 372:578-583.
- [47]Rosner M, Fuchs C, Siegel N, Valli A, Hengstschlager M: Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 2009, 18:3298-3310.
- [48]Shahbazian D, Parsyan A, Petroulakis E, Topisirovic I, Martineau Y, Gibbs B, Svitkin Y, Sonenberg N: Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol 2010, 30:1478-1485.
- [49]Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G: The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci U S A 2004, 101:11707-11712.
- [50]Manning G, Whyte D, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science 2002, 298:1912-1934.
- [51]Valin A, Cook J, Ross S, Saklad C, Gill G: Sp1 and Sp3 regulate transcription of the cyclin-dependent kinase 5 regulatory subunit 2 (p39) promoter in neuronal cells. Biochim Biophys Acta 2009, 1789:204-211.
- [52]Soppet D, Escandon E, Maragos J, Middlemas D, Reid S, Blair J, Burton L, Stanton B, Kaplan D, Hunter T, Nikolics K, Parada LF: The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 1991, 65:895-903.
- [53]Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones K, Reichardt L, Barbacid M: The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 1991, 66:395-403.
- [54]Alevizopoulos A, Dusserre Y, Ruegg U, Mermod N: Regulation of the transforming growth factor beta-responsive transcription factor CTF-1 by calcineurin and calcium/calmodulin-dependent protein kinase IV. J Biol Chem 1997, 272:23597-23605.
- [55]Cuadrado A, Molloy C, Pech M: Expression of protein kinase CI in NIH 3T3 cells increases its growth response to specific activators. FEBS Lett 1990, 260:281-284.
- [56]Grenier C, Bissonnette C, Volkov L, Roucou X: Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem 2006, 97:1456-1466.
- [57]Foster K, Fingar D: Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010, 285:14071-14077.
- [58]Sarbassov D, Guertin D, Ali S, Sabatini D: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307:1098-1101.
- [59]Alessi D, James S, Downes C, Holmes A, Gaffney P, Reese C, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997, 7:261-269.
- [60]Copp J, Manning G, Hunter T: TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 2009, 69:1821-1827.
- [61]Hawley S, Davison M, Woods A, Davies S, Beri R, Carling D, Hardie D: Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 1996, 271:27879-27887.
- [62]Sarbassov D, Ali S, Kim D, Guertin D, Latek R, Erdjument-Bromage H, Tempst P, Sabatini D: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004, 14:1296-1302.
- [63]Burnett P, Barrow R, Cohen N, Snyder S, Sabatini D: RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 1998, 95:1432-1437.
- [64]Ferrari S, Bandi H, Hofsteenge J, Bussian B, Thomas G: Mitogen-activated 70 K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 1991, 266:22770-22775.
- [65]Raught B, Peiretti F, Gingras A, Livingstone M, Shahbazian D, Mayeur G, Polakiewicz R, Sonenberg N, Hershey J: Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004, 23:1761-1769.
- [66]Waskiewicz A, Johnson J, Penn B, Mahalingam M, Kimball S, Cooper J: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999, 19:1871-1880.
- [67]Redpath N, Price N, Severinov K, Proud C: Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 1993, 213:689-699.
- [68]Kelly S, Zhang Z, Zhao H, Xu L, Giffard R, Sapolsky R, Yenari M, Steinberg G: Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 2002, 52:160-167.
- [69]Jiang B, Liang P, Deng G, Tu Z, Liu M, Xiao X: Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress Chaperones 2011, 16:143-152.
- [70]Rozen F, Edery I, Meerovitch K, Dever T, Merrick W, Sonenberg N: Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 1990, 10:1134-1144.
- [71]Rozovsky N, Butterworth A, Moore M: Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 2008, 14:2136-2148.
- [72]Methot N, Pickett G, Keene J, Sonenberg N: In vitro RNA selection identifies RNA ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA remotif. RNA 1996, 2:38-50.
- [73]Methot N, Song M, Sonenberg N: A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol Cell Biol 1996, 16:5328-5334.
- [74]Combs C, Johnson D, Cannady S, Lehman T, Landreth G: Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci 1999, 19:928-939.
- [75]Jin J, Choi J, Lee H, Kim Y, Carp R, Choi E: Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci Lett 1999, 273:37-40.
- [76]Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche J, Lehmann S, Launay J, Kellermann O: Signal transduction through prion protein. Science 2000, 289:1925-1928.
- [77]Chiarini L, Freitas A, Zanata S, Brentani R, Martins V, Linden R: Cellular prion protein transduces neuroprotective signals. EMBO J 2002, 21:3317-3326.
- [78]Lopes J, Oliveira C, Agostinho P: Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-Beta and prion peptides: implications for Alzheimer’s disease and prion-related encephalopathies. Cell Mol Neurobiol 2007, 27:943-957.
- [79]Lopes M, Hajj G, Muras A, Mancini G, Castro R, Ribeiro K, Brentani R, Linden R, Martins V: Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 2005, 25:11330-11339.
- [80]Kanaani J, Prusiner S, Diacovo J, Baekkeskov S, Legname G: Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 2005, 95:1373-1386.
- [81]Weise J, Sandau R, Schwarting S, Crome O, Wrede A, Schulz-Schaeffer W, Zerr I, Bahr M: Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 2006, 37:1296-1300.
- [82]Krebs B, Dorner-Ciossek C, Schmalzbauer R, Vassallo N, Herms J, Kretzschmar H: Prion protein induced signaling cascades in monocytes. Biochem Biophys Res Commun 2006, 340:13-22.
- [83]Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O: NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A 2003, 100:13326-13331.
- [84]Monnet C, Gavard J, Mege R, Sobel A: Clustering of cellular prion protein induces ERK1/2 and stathmin phosphorylation in GT1-7 neuronal cells. FEBS Lett 2004, 576:114-118.
- [85]Lee H, Jun Y, Choi J, Kim J, Carp R, Kim Y: Activation of mitogen-activated protein kinases in hamster brains infected with 263 K scrapie agent. J Neurochem 2005, 95:584-593.
- [86]Nixon R: Prion-associated increases in Src-family kinases. J Biol Chem 2005, 280:2455-2462.
- [87]Caetano F, Lopes M, Hajj G, Machado C, Pinto Arantes C, Magalhaes A, Vieira Mde P, Americo T, Massensini A, Priola S, Vorberg I, Gomez MV, Linden R, Prado VF, Martins VR, Prado MA: Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 2008, 28:6691-6702.
- [88]Roffe M, Beraldo F, Bester R, Nunziante M, Bach C, Mancini G, Gilch S, Vorberg I, Castilho B, Martins V, Hajj G: Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci U S A 2010, 107:13147-13152.
- [89]Spurrier B, Ramalingam S, Nishizuka S: Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 2008, 3:1796-1808.
- [90]Booth S, Bowman C, Baumgartner R, Dolenko B, Sorensen G, Robertson C, Coulthart M, Phillipson C, Somorjai R: Molecular classification of scrapie strains in mice using gene expression profiling. Biochem Biophys Res Commun 2004, 325:1339-1345.
- [91]Booth S, Bowman C, Baumgartner R, Sorensen G, Robertson C, Coulthart M, Phillipson C, Somorjai R: Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J Gen Virol 2004, 85:3459-3471.
- [92]Brown A, Rebus S, McKimmie C, Robertson K, Williams A, Fazakerley J: Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 2005, 334:86-95.
- [93]Riemer C, Neidhold S, Burwinkel M, Schwarz A, Schultz J, Kratzschmar J, Monning U, Baier M: Gene expression profiling of scrapie-infected brain tissue. Biochem Biophys Res Commun 2004, 323:556-564.
- [94]Sawiris G, Becker K, Elliott E, Moulden R, Rohwer R: Molecular analysis of bovine spongiform encephalopathy infection by cDNA arrays. J Gen Virol 2007, 88:1356-1362.
- [95]Skinner P, Abbassi H, Chesebro B, Race R, Reilly C, Haase A: Gene expression alterations in brains of mice infected with three strains of scrapie. BMC Genomics 2006, 7:114. BioMed Central Full Text
- [96]Xiang W, Windl O, Wunsch G, Dugas M, Kohlmann A, Dierkes N, Westner I, Kretzschmar H: Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 2004, 78:11051-11060.
- [97]Xiang W, Hummel M, Mitteregger G, Pace C, Windl O, Mansmann U, Kretzschmar H: Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model. J Neurochem 2007, 102:834-847.
- [98]Sorensen G, Medina S, Parchaliuk D, Phillipson C, Robertson C, Booth S: Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008, 9:114. BioMed Central Full Text
- [99]Filali H, Martin-Burriel I, Harders F, Varona L, Lyahyai J, Zaragoza P, Pumarola M, Badiola J, Bossers A, Bolea R: Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011, 6:e19909.
- [100]Majer A, Medina S, Niu Y, Abrenica B, Manguiat K, Frost K, Philipson C, Sorensen D, Booth S: Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012, 8:e1003002.
- [101]Hwang D, Lee I, Yoo H, Gehlenborg N, Cho J, Petritis B, Baxter D, Pitstick R, Young R, Spicer D, Price ND, Hohmann JG, Dearmond SJ, Carlson GA, Hood LE: A systems approach to prion disease. Mol Syst Biol 2009, 5:252.
- [102]Kim H, Snyder G, Blazey T, Race R, Chesebro B, Skinner P: Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms. Adv Appl Bioinform Chem 2008, 1:29-50.
- [103]Gygi S, Rochon Y, Franza B, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19:1720-1730.
- [104]Friedman R, Farh K, Burge C, Bartel D: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
- [105]Saba R, Goodman C, Huzarewich R, Robertson C, Booth S: A miRNA signature of prion induced neurodegeneration. PLoS One 2008, 3:e3652.
- [106]Montag J, Hitt R, Opitz L, Schulz-Schaeffer W, Hunsmann G, Motzkus D: Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener 2009, 4:36. BioMed Central Full Text
- [107]Otter T, King S, Witman G: A two-step procedure for efficient electrotransfer of both high-molecular-weight (greater than 400,000) and low-molecular-weight (less than 20,000) proteins. Anal Biochem 1987, 162:370-377.
- [108]Yeung Y, Stanley E: A solution for stripping antibodies from polyvinylidene fluoride immunoblots for multiple reprobing. Anal Biochem 2009, 389:89-91.
- [109]Harlow E, Lane D: Using Antibodies: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1999.
- [110]de Hoon M, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20:1453-1454.
- [111]Saldanha A: Java Treeview–extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.