期刊论文详细信息
Particle and Fibre Toxicology
Molecular characterization of a defensin gene from a hard tick, Dermacentor silvarum
Jianfeng Dai1  Tingting Feng1  Wen Pan2  Gang Bian2  Juanjuan Wang2 
[1] Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, P.R. China;Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou City, Jiangsu Province, People’s Republic of China
关键词: Dermacentor silvarum;    Tick;    Antimicrobial peptide (AMP);    Defensin;   
Others  :  1147899
DOI  :  10.1186/s13071-014-0625-0
 received in 2014-06-18, accepted in 2014-11-21,  发布年份 2015
PDF
【 摘 要 】

Background

Ticks are distributed worldwide and considered as vectors of many human diseases. Tick defensins, a family of antimicrobial peptides, form the first line of defense against pathogens.

Findings

A defensin-like gene, named Ds-defensin, was identified from a cDNA library of the hard tick Dermacentor silvarum collected from northeast China. The full-length cDNA of Ds-defensin was 225 bp, encoding a 74 amino acid peptide. The nucleotide sequence of Ds-defensin shared 98.2% similarity to putative defensin from Dermacentor marginatus. RT-PCR results suggested that Ds-defensin was extensively expressed in tick salivary gland and midgut, with a higher expression level in midgut. Ds-defensin showed broad antimicrobial activity against various Gram-positive and Gram-negative bacteria, as well as the fungus Candida albicans.

Conclusions

We characterized a functional defensin from D. silvarum of China. Ds-defensin showed bactericidal activity against various Gram-positive and Gram-negative bacteria. Ds-defensin can be expected to be introduced to the medical field as a new molecule with antibacterial activity.

【 授权许可】

   
2015 Wang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404063508369.pdf 955KB PDF download
Figure 3. 8KB Image download
Figure 2. 58KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Vilcins IM, Old JM, Deane E. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species. Exp Appl Acarol. 2009; 49(3):229-42.
  • [2]Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin North Am. 2008; 22(2):195-215. v
  • [3]Grzeszczuk A, Stanczak J, Kubica-Biernat B. Serological and molecular evidence of human granulocytic ehrlichiosis focus in the Bialowieza Primeval Forest (Puszcza Bialowieska), northeastern Poland. Eur J Clin Microbiol Infect Dis. 2002; 21(1):6-11.
  • [4]Zhan L, Cao WC, Chu CY, Jiang BG, Zhang F, Liu W, Dumler JS, Wu XM, Zuo SQ, Zhang PH et al.. Tick-borne agents in rodents, China, 2004-2006. Emerg Infect Dis. 2009; 15(12):1904-8.
  • [5]Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870):389-95.
  • [6]Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F, Liu J, Yu H. A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci. 2010; 19(3):392-7.
  • [7]Kopacek P, Hajdusek O, Buresova V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010; 708:137-62.
  • [8]Telleria EL, Sant’Anna MR, Alkurbi MO, Pitaluga AN, Dillon RJ, Traub-Cseko YM. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasit Vectors. 2013; 6:12. BioMed Central Full Text
  • [9]Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, Yamakawa M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochim Biophys Acta. 2003; 1624(1–3):125-30.
  • [10]Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J. 2004; 379(Pt 3):681-5.
  • [11]Rudenko N, Golovchenko M, Grubhoffer L. Gene organization of a novel defensin of Ixodes ricinus: first annotation of an intron/exon structure in a hard tick defensin gene and first evidence of the occurrence of two isoforms of one member of the arthropod defensin family. Insect Mol Biol. 2007; 16(4):501-7.
  • [12]Rudenko N, Golovchenko M, Edwards MJ, Grubhoffer L. Differential expression of Ixodes ricinus tick genes induced by blood feeding or Borrelia burgdorferi infection. J Med Entomol. 2005; 42(1):36-41.
  • [13]Zhou J, Liao M, Ueda M, Gong H, Xuan X, Fujisaki K. Sequence characterization and expression patterns of two defensin-like antimicrobial peptides from the tick Haemaphysalis longicornis. Peptides. 2007; 28(6):1304-10.
  • [14]Kocan KM, de la Fuente J, Manzano-Roman R, Naranjo V, Hynes WL, Sonenshine DE. Silencing expression of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. Exp Appl Acarol. 2008; 46(1–4):17-28.
  • [15]Saito Y, Konnai S, Yamada S, Imamura S, Nishikado H, Ito T, Onuma M, Ohashi K. Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. Insect Mol Biol. 2009; 18(4):531-9.
  • [16]Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, Fujisaki K. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun. 2007; 75(7):3633-40.
  • [17]Isogai E, Isogai H, Takahashi K, Kobayashi-Sakamoto M, Okumura K. Antimicrobial activity of three tick defensins and four mammalian cathelicidin-derived synthetic peptides against Lyme disease spirochetes and bacteria isolated from the midgut. Exp Appl Acarol. 2009; 49(3):221-8.
  • [18]Wen J, Jiao D, Wang JH, Yao DH, Liu ZX, Zhao G, Ju WD, Cheng C, Li YJ, Sun Y. Rickettsia raoultii, the predominant Rickettsia found in Dermacentor silvarum ticks in China-Russia border areas. Exp Appl Acarol. 2014; 63(4):579-85.
  • [19]Zhang L, Liu H, Xu B, Lu Q, Li L, Chang L, Zhang X, Fan D, Li G, Jin Y et al.. Anaplasma phagocytophilum infection in domestic animals in ten provinces/cities of China. Am J Trop Med Hyg. 2012; 87(1):185-9.
  • [20]Tian ZC, Liu GY, Shen H, Xie JR, Luo J, Tian MY. First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China. Parasit Vectors. 2012; 5:19. BioMed Central Full Text
  • [21]Chrudimska T, Chrudimsky T, Golovchenko M, Rudenko N, Grubhoffer L. New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet Parasitol. 2010; 167(2–4):298-303.
  • [22]Clark RP, Hu LT. Prevention of lyme disease and other tick-borne infections. Infect Dis Clin North Am. 2008; 22(3):381-96. vii
  • [23]Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001; 1(3):156-64.
  • [24]Chrudimska T, Slaninova J, Rudenko N, Ruzek D, Grubhoffer L. Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus. Parasit Vectors. 2011; 4:63. BioMed Central Full Text
  • [25]Chrudimska T, Cerovsky V, Slaninova J, Rego RO, Grubhoffer L. Defensin from the ornate sheep tick Dermacentor marginatus and its effect on Lyme borreliosis spirochetes. Dev Comp Immunol. 2014; 46(2):165-70.
  • [26]Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev Comp Immunol. 2011; 35(11):1128-34.
  文献评价指标  
  下载次数:8次 浏览次数:1次