期刊论文详细信息
Molecular Neurodegeneration
Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease
David T. Dexter4  Joanna L. Elson2  Dominic Withers5  Sabine Gretenkord3  Vincenzo De Paola5  Puneet Sharma4  Sarah E. Gartside3  Ilse S. Pienaar1 
[1] Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa;Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 ONN, UK;Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
关键词: Pedunculopontine nucleus;    Parkinson’s disease;    DREADD;    Deep brain stimulation;    Cholinergic;   
Others  :  1226960
DOI  :  10.1186/s13024-015-0044-5
 received in 2015-07-03, accepted in 2015-09-08,  发布年份 2015
PDF
【 摘 要 】

Background

Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre +transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients.

Results

In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population.

Conclusions

Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.

【 授权许可】

   
2015 Pienaar et al.

【 预 览 】
附件列表
Files Size Format View
20150927040429829.pdf 2141KB PDF download
Fig. 6. 66KB Image download
Fig. 5. 82KB Image download
Fig. 4. 102KB Image download
Fig. 3. 88KB Image download
Fig. 2. 148KB Image download
Fig. 1. 144KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Winn P, Brown VJ, Inglis WL. On the relationship between the striatum and the pedunculopontine tegmental nucleus. Crit Rev Neurobiol. 1997; 11:241-61.
  • [2]Alessandro S, Ceravolo R, Brusa L, Pierantozzi M, Costa A, Galati S et al.. Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: focus on sleep and cognitive do mains. J Neurol Sci. 2010; 289:44-8.
  • [3]Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat. 2011; 5:22.
  • [4]Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranucleur palsy. Proc Natl Acad Sci U S A. 1987; 84:5976-80.
  • [5]Pienaar IS, Elson JL, Racca C, Nelson G, Turnbull DM, Morris CM. Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Am J Pathol. 2013; 183:1826-40.
  • [6]Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol. 1987; 22:18e25.
  • [7]MacLaren DA, Santini JA, Russell AL, Markovic T, Clark SD. Deficits in motor performance after pedunculopontine lesions in rats – impairment depends on demands of task. Eur J Neurosci. 2014; 40:3224-36.
  • [8]Karachi C, Grabli D, Bernard FA, Tande D, Wattiez N, Belaid H et al.. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest. 2010; 120:2745-54.
  • [9]Clark SD, Alderson HL, Winn P, Latimer MP, Nothacker HP, Civelli O. Fusion of diphtheria toxin and urotensin II produces a neurotoxin selective for cholinergic neurons in the rat mesopontine tegmentum. J Neurochem. 2007; 102:112-20.
  • [10]Pienaar IS, Lu B, Schallert T. Closing the gap between clinic and cage: sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson’s disease. Neurosci Biobehav Rev. 2012; 36:2305-24.
  • [11]Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK et al.. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Brain Struct Funct. 2015; 220:479-500.
  • [12]Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Academic, Sydney; 2009.
  • [13]Elson JL, Yates A, Pienaar IS. Pedunculopontine cell loss and protein aggregation direct microglia activation in parkinsonian rats. Brain Struct Funct. 2015; doi:10.1007/s00429-015-1045-4.
  • [14]Pienaar IS, Van de Berg W. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats. Exp Neurol. 2013; 248:213-23.
  • [15]Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport. 2005; 16:1883-7.
  • [16]Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D et al.. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain. 2007; 130:1596-1607.
  • [17]Wilcox RA, Cole MH, Wong D, Coyne T, Silburn P, Kerr G. Pedunculopontine nucleus deep brain stimulation produces sustained improvement in primary progressive freezing of gait. J Neurol Neurosurg Psychiatry. 2011; 82:1256-9.
  • [18]Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD et al.. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010; 133:215-24.
  • [19]Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El Helou A, et al. PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol. 2015; doi:10.1007/s00415-015-7744-1.
  • [20]Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a parkinsonian monkey. Neuroreport. 2004; 15:2621-4.
  • [21]Jenkinson N, Nandi D, Oram R, Stein JF, Aziz TZ. Pedunculopontine nucleus electrical stimulation alleviates akinesia independently of dopaminergic mechanisms. Neuroreport. 2006; 17:639-41.
  • [22]Mesulam MM, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: an overview based on alternative nomenclature (Hh1-Ch6). Neuroscience. 1983; 10:1185-1201.
  • [23]Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP. GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol. 2009; 515:397-408.
  • [24]Wang HL, Morales M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci. 2009; 29:340-58.
  • [25]Sharma P, Pienaar IS. Pharmacogenetic and optical dissection for mechanistic understanding of Parkinson’s disease: potential utilities revealed through behavioural assessment. Neurosci Biobehav Rev. 2014; 47C:87-100.
  • [26]Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A. 2007; 104:5163-8.
  • [27]Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA et al.. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron. 2009; 63:27-39.
  • [28]Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M et al.. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron. 2011; 72:721-33.
  • [29]Rye DB, Saper CB, Lee HJ, Wainer BH. Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol. 1987; 259:483-528.
  • [30]Ichinohe N, Teng B, Kitai ST. Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Anat Embryol (Berl). 2000; 201:435-53.
  • [31]Michaelides M, Anderson SA, Ananth M, Smirnov D, Thanos PK, Neumaier JF et al.. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J Clin Invest. 2013; 123:5342-50.
  • [32]Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible porto-oncogenes fos and jun. Annu Rev Neurosci. 1991; 14:421-51.
  • [33]Ferguson SM, Phillips PE, Roth BL, Wess J, Neumaier JF. Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci. 2013; 33:11668-76.
  • [34]Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS et al.. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011; 121:1424-8.
  • [35]Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One. 2011; 6: Article ID e20360
  • [36]Mena-Segovia J, Sims HM, Magill PJ, Bolam JP. Cholinergic brainstem neurons modulate cortical gamma activity during slow oscillations. J Physiol. 2008; 586:2947-60.
  • [37]Kang Y, Kitai ST. Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res. 1990; 535:79-95.
  • [38]Leonard CS, Llinás RR. Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the control of REM sleep. In: Brain cholinergic systems. Steriade M, Biesold D, editors. Oxford University Press, New York; 1990: p.205-23.
  • [39]Takakusaki K, Kitai ST. Ionic mechanisms involved in the spontaneous firing of the tegmental pedunculopontine nucleus (PPN) neurons of the rat. Neuroscience. 1997; 78:771-94.
  • [40]Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. Electrophysiological effects of orexins/hypocretins on pedunculopntine tegmental neurons in rats: an in vitro study. Peptides. 2009; 30:191-209.
  • [41]Vincent SR, Satoh K, Armstrong DM, Fibiger HC. NADPH diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation. Neurosci Lett. 1983; 43:31-6.
  • [42]Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST. Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labelling. J Comp Neurol. 1996; 371:345-61.
  • [43]Zhang QJ, Liu J, Wang Y, Wang S, Wu ZH, Yan W et al.. The firing activity of presumed cholinergic and non-cholinergic neurons of the pedunculopontine nucleus in 6-hydroxydopamine-lesioned rats: an in vivo electrophysiological study. Brain Res. 2008; 1243:152-60.
  • [44]Breit S, Bouali-Benazzouz R, Benabid AL, Benazzouz A. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci. 2001; 14:1833-42.
  • [45]Jeon MF, Ha Y, Cho YH, Lee BH, Park YG, Chang JW. Effect of ipsilateral subthalamic nucleus lesioning in a rat parkinsonian model: study of behavior correlated with neuronal activity in the pedunculopontine nucleus. J Neurosurg. 2003; 99:762-7.
  • [46]Lewis GN, Byblow WD. Altered sensorimotor integration in Parkinson’s disease. Brain. 2002; 125:2089-99.
  • [47]Timofeeva E, Dufresne C, Sik A, Zhang ZW, Deschênes M. Cholinergic modulation of vibrissal receptive fields in trigeminal nuclei. J Neurosci. 2005; 25:9135-43.
  • [48]Steidl S, Wang H, Wise RA. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats. PLoS One. 2014; 9: Article ID e84412
  • [49]Yarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord. 2011;26:2496–503.
  • [50]Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA et al.. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009; 73:1670-6.
  • [51]Rochester L, Yarnall AJ, Baker MR, David RV, Lord S, Galna B et al.. Cholinergic dysfunction contributes to gait disturbances in early Parkinson’s disease. Brain. 2012; 135:2779-88.
  • [52]Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P et al.. Non-invasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002; 13:392-7.
  • [53]Hammond C, Rouzaire-Dubois B, Féger J, Jackson A, Crossman AR. Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience. 1983; 9:41-52.
  • [54]Clarke PB, Hommer DW, Pert A, Skirboll LR. Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience. 1987; 23:1011-19.
  • [55]Bevan MD, Bolam JP. Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci. 1995; 15:7105-20.
  • [56]Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013; 62:132-44.
  • [57]Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994; 72:507-20.
  • [58]Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience. 2001; 106:313-30.
  • [59]Woodlee MT, Asseo-Garcia AM, Zhao X, Liu SJ, Jones TA, Schallert T. Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats. Exp Neurol. 2005; 191:310-17.
  • [60]Kirik D, Rosenblad C, Björklund A. Characterization of behavioural and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol. 1998; 152:259-77.
  • [61]Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002; 15:120-32.
  • [62]Grabli D, Karachi C, Folgoas E, Monfort M, Tande D, Clark S et al.. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J Neurosci. 2013; 33:11986-93.
  • [63]Nakagawa M, Ohgod M, Nishizawa Y, Ogura H. Dopaminergic agonists and muscarinic antagonists improve lateralization in hemiparkinsonian rats in a novel exploratory Y-maze. J Pharmacol Exp Ther. 2004; 309:737-44.
  • [64]Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN et al.. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis. 2015; 74C:392-405.
  • [65]Root DH, Mejias-Aponte CA, Qi J, Morales M. Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J Neurosci. 2014; 34:13906-10.
  • [66]Gillies GE, Pienaar IS, Vohra S, Qamhawi Z. Sex differences in Parkinson’s disease. Front Neuroendocrinol. 2014; 35:370-84.
  • [67]Oorschot DE. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical dissector methods. J Compar Neurol. 1996; 366:580-99.
  • [68]Maskos U. The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol. 2008; 153:S438-45.
  • [69]Schmitz C, Hof PR. Design-based stereology in neuroscience. Neuroscience. 2005; 130:813-31.
  • [70]West MJ, Gundersen HJ. Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol. 1990; 296:1-22.
  文献评价指标  
  下载次数:2次 浏览次数:11次