Molecular Cytogenetics | |
Partial tetrasomy of the proximal long arm of chromosome 15 in two patients: the significance of the gene dosage in terms of phenotype | |
Bela Melegh1  Katalin Komlosi1  Balazs Duga1  Kinga Hadzsiev1  Marta Czako1  Andras Szabo1  | |
[1] Szentagothai Research Centre, Ifjusag 20, Pecs, H-7624, Hungary | |
关键词: Supernumerary chromosome; 15q duplication syndrome; Dysmorphism; Epilepsy; Array CGH; | |
Others : 1221600 DOI : 10.1186/s13039-015-0137-4 |
|
received in 2015-02-27, accepted in 2015-04-21, 发布年份 2015 | |
【 摘 要 】
Background
Large amounts of low copy number repeats in the 15q11.2q13.3 chromosomal region increase the possibility of misalignments and unequal crossover during meiosis in this region, leading to deletions, duplications, triplications and supernumerary chromosomes. Most of the reported cases with epilepsy, autism and Prader-Willi/Angelman syndrome are in association with rearrangements of the proximal long arm of chromosome 15.
Results
Here we report the first two unrelated Hungarian patients with the same epileptic and dysmorphic features, who were investigated by array comparative genomic hybridization (array CGH). By G-banded karyotype followed by FISH and array CGH we could detect partial tetrasomy of the 15q11.2q13.3 chromosomal region, supporting proximal 15q duplication syndrome. Findings of the array CGH gave fully explanation of the phenotypic features of these patients, including epileptic seizures, delayed development, hyperactivity and craniofacial dysmorphic signs. Besides the described features of isodicentric (15) (idic(15)) syndrome Patient 1. suffered from bigeminic extrasystoles and had postnatal growth retardation, which had been published only in a few articles.
Conclusions
Dosage effect of some genes in the concerned genomic region is known, but several genes have no evidence to have dosage dependence. Our results expanded the previous literature data. We assume dosage dependence in the case of CHRNA7 and OTUD7A, which might be involved in growth regulation. On the other hand increased dosage of the KLF13 gene seems to have no direct causal relationship with heart morphology. The genomic environment of the affected genes may be responsible for the observed phenotype.
【 授权许可】
2015 Szabo et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150802094119879.pdf | 1956KB | download | |
Figure 3. | 37KB | Image | download |
Figure 2. | 69KB | Image | download |
Figure 1. | 52KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Moon HJ, Yim SV, Lee WK, Jeon YW, Kim YH, Ko YJ et al.. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem Biophys Res Commun. 2006; 344(2):531-9.
- [2]Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989; 342(6247):281-5.
- [3]Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1––qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991; 38(1):74-9.
- [4]Battaglia A. The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis. 2008; 3:30. BioMed Central Full Text
- [5]Roberts SE, Maggouta F, Thomas NS, Jacobs PA, Crolla JA. Molecular and fluorescence in situ hybridization characterization of the breakpoints in 46 large supernumerary marker 15 chromosomes reveals an unexpected level of complexity. Am J Med Genet. 2003; 73(5):1061-72.
- [6]Liehr T, Brude E, Gillessen-Kaesbach G, Konig R, Mrasek K, von Eggeling F et al.. Prader-Willi syndrome with a karyotype 47, XY,+min(15)(pter- > q11.1:) and maternal UPD 15–case report plus review of similar cases. Eur J Med Genet. 2005; 48(2):175-81.
- [7]Cotter PD, Ledesma CT, Dietz LG, Pusso S, Wohlferd MM, Goldberg JD. Prenatal diagnosis of supernumerary marker 15 chromosomes and exclusion of uniparental disomy for chromosome 15. Prenat Diagn. 1999; 19(8):721-6.
- [8]Dennis NR, Veltman MW, Thompson R, Craig E, Bolton PF, Thomas NS. Clinical findings in 33 subjects with large supernumerary marker(15) chromosomes and 3 subjects with triplication of 15q11-q13. Am J Med Genet A. 2006; 140(5):434-41.
- [9]Borelina D, Esperante S, Gutnisky V, Ferreiro V, Ferrer M, Giliberto F et al.. Supernumerary marker 15 chromosome in a patient with Prader-Willi syndrome. Clin Genet. 2004; 65(3):242-3.
- [10]Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA, Dorrani N et al.. Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: another mechanism for partial hexasomy. Hum Genet. 2004; 115(2):104-11.
- [11]Huang XL, de Michelena MI, Mark H, Harston R, Benke PJ, Price SJ et al.. Characterization of an analphoid supernumerary marker chromosome derived from 15q25–qter using high-resolution CGH and multiplex FISH analyses. Clin Genet. 2005; 68(6):513-9.
- [12]Cheng SD, Spinner NB, Zackai EH, Knoll JH. Cytogenetic and molecular characterization of inverted duplicated chromosomes 15 from 11 patients. Am J Med Genet. 1994; 55(4):753-9.
- [13]Rineer S, Finucane B, Simon EW. Autistic symptoms among children and young adults with isodicentric chromosome 15. Am J Med Genet. 1998; 81(5):428-33.
- [14]McGinniss MJ, Brown DH, Burke LW, Mascarello JT, Jones MC. Ring chromosome X in a child with manifestations of Kabuki syndrome. Am J Med Genet. 1997; 70(1):37-42.
- [15]Cockwell AE, Davalos IP, Rivera HR, Crolla JA. FISH characterisation of dynamic mosaicism involving an inv dup(15) in a patient with mental retardation. Am J Med Genet. 2001; 103(4):289-94.
- [16]Shibuya Y, Tonoki H, Kajii N, Niikawa N. Identification of a marker chromosome as inv dup(15) by molecular analysis. Clin Genet. 1991; 40(3):233-6.
- [17]van Bon BW, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM et al.. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009; 46(8):511-23.
- [18]Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO et al.. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet. 2009; 46(2):86-93.
- [19]Battaglia A, Parrini B, Tancredi R. The behavioral phenotype of the idic(15) syndrome. Am J Med Genet C: Semin Med Genet. 2010; 154C(4):448-55.
- [20]Moeschler JB, Mohandas TK, Hawk AB, Noll WW. Estimate of prevalence of proximal 15q duplication syndrome. Am J Med Genet. 2002; 111(4):440-2.
- [21]Yang J, Yang Y, Huang Y, Hu Y, Chen X, Sun H et al.. A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC Med Genet. 2013; 14:9. BioMed Central Full Text
- [22]Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Med Genet. 2004; 75(2):267-81.
- [23]Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S et al.. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421(6921):384-8.
- [24]Lacaze E, Gruchy N, Penniello-Valette MJ, Plessis G, Richard N, Decamp M et al.. De novo 15q13.3 microdeletion with cryptogenic West syndrome. Am J Med Genet A. 2013; 161A(10):2582-7.
- [25]Valbonesi S, Magri C, Traversa M, Faraone SV, Cattaneo A, Milanesi E et al.. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role. Psychiatr Genet. 2014.
- [26]Soler-Alfonso C, Carvalho CM, Ge J, Roney EK, Bader PI, Kolodziejska KE et al.. CHRNA7 triplication associated with cognitive impairment and neuropsychiatric phenotypes in a three-generation pedigree. Eur J Med Genet: EJHG. 2014; 22(9):1071-6.
- [27]Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol. 2008; 295(1):R189-96.
- [28]Tsang HT, Edwards TL, Wang X, Connell JW, Davies RJ, Durrington HJ et al.. The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet. 2009; 18(20):3805-21.
- [29]Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T et al.. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet. 2007; 3(12): Article ID e235
- [30]Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE et al.. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet. 2008; 40(3):322-8.
- [31]Masurel-Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M et al.. Delineation of 15q13.3 microdeletions. Clin Genet. 2010; 78(2):149-61.
- [32]Campos CM, Zanardo EA, Dutra RL, Kulikowski LD, Kim CA. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects. Arquivos brasileiros de cardiologia. 2014;104(1):24–31.
- [33]Lavallee G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME et al.. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J. 2006; 25(21):5201-13.
- [34]Nemer M, Horb ME. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle. 2007; 6(2):117-21.
- [35]Derwinska K, Bartnik M, Wisniowiecka-Kowalnik B, Jagla M, Rudzinski A, Pietrzyk JJ et al.. Assessment of the role of copy-number variants in 150 patients with congenital heart defects. Med Wieku Rozwoj. 2012; 16(3):175-82.
- [36]Hamid A, Weise A, Voigt M, Bucksch M, Kosyakova N, Liehr T et al.. Clinical impact of proximal autosomal imbalances. Balkan j med gen : BJMG. 2012; 15(2):15-22.
- [37]Davis R, Peters DH, McTavish D. Valproic acid: A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs. 1994; 47(2):332-72.
- [38]Grant SM, Heel RC. Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs. 1991; 41(6):889-926.
- [39]Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999; 4(11):446-52.
- [40]Small supernumerary marker chromosomes (sSMC) [database on the Internet]. Available from:. http://ssmc-tl. com/chromosome-15.html#sei webcite
- [41]Caspersson T, Zech L, Johansson C, Modest EJ. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma. 1970; 30(2):215-27.
- [42]Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J et al.. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988; 85(23):9138-42.
- [43]Glatt K, Sinnett D, Lalande M. The human gamma-aminobutyric acid receptor subunit beta 3 and alpha 5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)n repeats. Genomics. 1994; 19(1):157-60.
- [44]Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P et al.. The 1993–94 Genethon human genetic linkage map. Nat Genet. 1994; 7(2 Spec No):246-339.
- [45]Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al.. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992; 258(5083):818-21.