期刊论文详细信息
Molecular Cytogenetics
3D-FISH analysis reveals chromatid cohesion defect during interphase in Roberts syndrome
Jean-Michel Dupont6  Brigitte Benzacken5  Anne-Claude Tabet3  Pierre Bourdoncle8  Emmanuel Spaggiari1  Benedicte Gerard2  Camille Lebugle8  Dominique Le Tessier6  Daniel Smiljkovski6  Lilia Kraoua2  Fabien Guimiot4  Martine Bucourt7  Celine Dupont3 
[1] Service de Biologie du Développement- APHP, Hôpital Robert Debré, Paris, France;Unité fonctionnelle de Génétique moléculaire - Département de Génétique- APHP, Hôpital Robert Debré, Paris, France;Unité fonctionnelle de Cytogénétique-Département de Génétique- APHP, Hôpital Robert Debré, 48 Bd Sérurier, Paris, 75935, France;Université Paris Diderot Sorbonne Paris Cité, UMR 1141, Paris, F-75019, France;Service d¿Histologie, Embryologie et Cytogénétique, Biologie de la Reproduction- APHP, Hôpital Jean Verdier, Bondy, France; UFR-SMBH, Paris XIII, France;Laboratoire de Cytogénétique- APHP, Hôpitaux Universitaires Paris Centre, Paris, France;Laboratoire de F¿topathologie- APHP, Hôpital Jean Verdier, Bondy, France;Institut Cochin, Plateforme d¿imagerie cellulaire, Paris, France
关键词: Limb development;    Heterochromatin;    ESCO2;    Cohesinopathy;   
Others  :  1149763
DOI  :  10.1186/s13039-014-0059-6
 received in 2014-06-11, accepted in 2014-08-21,  发布年份 2014
PDF
【 摘 要 】

Background

Roberts syndrome (RBS) is a rare autosomal recessive disorder mainly characterized by growth retardation, limb defects and craniofacial anomalies. Characteristic cytogenetic findings are ¿railroad track¿ appearance of chromatids and premature centromere separation in metaphase spreads. Mutations in the ESCO2 (establishment of cohesion 1 homolog 2) gene located in 8p21.1 have been found in several families. ESCO2, a member of the cohesion establishing complex, has a role in the effective cohesion between sister chromatids. In order to analyze sister chromatids topography during interphase, we performed 3D-FISH using pericentromeric heterochromatin probes of chromosomes 1, 4, 9 and 16, on preserved nuclei from a fetus with RBS carrying compound heterozygous null mutations in the ESCO2 gene.

Results

Along with the first observation of an abnormal separation between sister chromatids in heterochromatic regions, we observed a statistically significant change in the intranuclear localization of pericentromeric heterochromatin of chromosome 1 in cells of the fetus compared to normal cells, demonstrating for the first time a modification in the spatial arrangement of chromosome domains during interphase.

Conclusion

We hypothesize that the disorganization of nuclear architecture may result in multiple gene deregulations, either through disruption of DNA cis interaction ¿such as modification of chromatin loop formation and gene insulation - mediated by cohesin complex, or by relocation of chromosome territories. These changes may modify interactions between the chromatin and the proteins associated with the inner nuclear membrane or the pore complexes. This model offers a link between the molecular defect in cohesion and the complex phenotypic anomalies observed in RBS.

【 授权许可】

   
2014 Dupont et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405100329944.pdf 859KB PDF download
Figure 3. 25KB Image download
Figure 2. 59KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Van Den Berg DJ, Francke U: Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet 1993, 47:1104-1123.
  • [2]Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H: Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 2005, 37:468-470.
  • [3]Schule B, Oviedo A, Johnston K, Pai S, Francke U: Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 2005, 77:1117-1128.
  • [4]Resta N, Susca FC, Di Giacomo MC, Stella A, Bukvic N, Bagnulo R, Simone C, Guanti G: A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in Nmd efficiency. J Cell Physiol 2006, 209:67-73.
  • [5]Schulz S, Gerloff C, Ledig S, Langer D, Volleth M, Shirneshan K, Wieacker P: Prenatal diagnosis of Roberts syndrome and detection of an ESCO2 frameshift mutation in a Pakistani family. Prenat Diagn 2008, 28:42-45.
  • [6]Gordillo M, Vega H, Trainer AH, Hou F, Sakai N, Luque R, Kayserili H, Basaran S, Skovby F, Hennekam RC, Uzielli ML, Schnur RE, Manouvrier S, Chang S, Blair E, Hurst JA, Forzano F, Meins M, Simola KO, Raas-Rothschild A, Schultz RA, McDaniel LD, Ozono K, Inui K, Zou H, Jabs EW: The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 2008, 17:2172-2180.
  • [7]Vega H, Trainer AH, Gordillo M, Crosier M, Kayserili H, Skovby F, Uzielli ML, Schnur RE, Manouvrier S, Blair E, Hurst JA, Forzano F, Meins M, Simola KO, Raas-Rothschild A, Hennekam RC, Jabs EW: Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet 2010, 47:30-37.
  • [8]Goh ES, Li C, Horsburgh S, Kasai Y, Kolomietz E, Morel CF: The Roberts syndrome/SC phocomelia spectrum¿a case report of an adult with review of the literature. Am J Med Genet A 2010, 152A:472-478.
  • [9]Cremer T, Cremer M: Chromosome territories. Cold Spring Harb Perspect Biol 2010, 2:a003889.
  • [10]Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T: Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 2005, 3:e157.
  • [11]Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA: Differences in the Localization and Morphology of Chromosomes in the Human Nucleus. J Cell Biol 1999, 145:1119-1131.
  • [12]Bickmore WA, Teague P: Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 2002, 10:707-715.
  • [13]Borden J, Manuelidis L: Movement of the X chromosome in epilepsy. Science 1988, 242:1687-1691.
  • [14]Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM: Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 2007, 6:139-153.
  • [15]Matarazzo MR, Boyle S, D¿Esposito M, Bickmore WA: Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 2007, 104:16546-16551.
  • [16]Dupont C, Guimiot F, Perrin L, Marey I, Smiljkovski D, Le Tessier D, Lebugle C, Baumann C, Bourdoncle P, Tabet AC, Aboura A, Benzacken B, Dupont JM: 3D position of pericentromeric heterochromatin within the nucleus of a patient with ICF syndrome. Clin Genet 2012, 82:187-192.
  • [17]Barbosa AC, Otto PA, Vianna-Morgante AM: Replication timing of homologous alpha-satellite DNA in Roberts syndrome. Chromosome Res 2000, 8:645-650.
  • [18]Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D: A handcuff model for the cohesin complex. J Cell Biol 2008, 183:1019-1031.
  • [19]Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ: Cohesin is dispensable for centromere cohesion in human cells. PLoS One 2007, 2:e318.
  • [20]Tomkins DJ, Sisken JE: Abnormalities in the cell-division cycle in Roberts syndrome fibroblasts: a cellular basis for the phenotypic characteristics? Am J Hum Genet 1984, 36:1332-1340.
  • [21]Dorsett D: Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 2007, 116:1-13.
  • [22]Donze D, Adams CR, Rine J, Kamakaka RT: The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 1999, 13:698-708.
  • [23]Rollins RA, Morcillo P, Dorsett D: Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 1999, 152:577-593.
  • [24]Dorsett D: Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 2011, 21:199-206.
  • [25]Horsfield JA, Print CG, Mönnich M: Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 2012, 3:171.
  • [26]Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM: Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008, 451:796-801.
  • [27]Wendt KS, Peters JM: How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 2009, 17:201-214.
  • [28]Bose T, Gerton JL: Cohesinopathies, gene expression, and chromatin organization. J Cell Biol 2010, 189:201-210.
  • [29]Mönnich M, Kuriger Z, Print CG, Horsfield JA: A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One 2011, 6:e20051.
  • [30]Whelan G, Kreidl E, Peters JM, Eichele G: The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions. Nucleus 2012, 3:330-334.
  • [31]Deniaud E, Bickmore WA: Transcription and the nuclear periphery: edge of darkness? Curr Opin Genet Dev 2009, 19:187-191.
  • [32]Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM: Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 2006, 441:774-778.
  • [33]Mekhail K, Moazed D: The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 2010, 11:317-328.
  文献评价指标  
  下载次数:26次 浏览次数:21次