| Molecular Pain | |
| Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons | |
| Bradley K Taylor1  Bret N Smith1  Camille B Blake1  Suzanne Doolen1  | |
| [1] Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY, 40536, USA | |
| 关键词: Calcium imaging; Central sensitization; AMPA receptor; Pain; | |
| Others : 863800 DOI : 10.1186/1744-8069-8-56 |
|
| received in 2012-05-30, accepted in 2012-07-05, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain.
Results
Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1) Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2) 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3) 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4) In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX)- and AMPA (GYKI 52466)-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5), kainate (UBP-301) and class I mGluRs (AIDA) did not. Compared to sham controls, peripheral nerve injury significantly decreased mechanical paw withdrawal threshold and increased glutamate-evoked Ca2+ signals.
Conclusions
Bulk-loading fura-2 AM into spinal cord slices is a successful means for determining glutamate-evoked Ca2+ mobilization in naïve adult dorsal horn neurons. AMPA receptors mediate the majority of these responses. Peripheral neuropathic injury potentiates Ca2+ signaling in dorsal horn.
【 授权许可】
2012 Doolen et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140725063213609.pdf | 1549KB | ||
| 59KB | Image | ||
| 49KB | Image | ||
| 28KB | Image | ||
| 64KB | Image | ||
| 66KB | Image |
【 图 表 】
【 参考文献 】
- [1]Latremoliere A, Woolf CJ: Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009, 10:895-926.
- [2]Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN: Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 2006, 26:1281-1292.
- [3]Antal M, Fukazawa Y, Eordogh M, Muszil D, Molnar E, Itakura M, Takahashi M, Shigemoto R: Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci 2008, 28:9692-9701.
- [4]Alvarez FJ, Villalba RM, Carr PA, Grandes P, Somohano PM: Differential distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat spinal cord. J Comp Neurol 2000, 422:464-487.
- [5]Carvalho AL, Duarte CB, Carvalho AP: Regulation of AMPA receptors by phosphorylation. Neurochem Res 2000, 25:1245-1255.
- [6]Chen BS, Roche KW: Regulation of NMDA receptors by phosphorylation. Neuropharmacology 2007, 53:362-368.
- [7]Lau CG, Zukin RS: NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007, 8:413-426.
- [8]Ruscheweyh R, Sandkuhler J: Long-range oscillatory Ca2+ waves in rat spinal dorsal horn. Eur J Neurosci 2005, 22:1967-1976.
- [9]Schoffnegger D, Ruscheweyh R, Sandkuhler J: Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain 2008, 135:300-310.
- [10]Luo C, Seeburg PH, Sprengel R, Kuner R: Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain 2008, 140:358-367.
- [11]Ghosh A, Greenberg ME: Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 1995, 268:239-247.
- [12]Barres BA: New roles for glia. J Neurosci 1991, 11:3685-3694.
- [13]Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F: Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004, 1:31-37.
- [14]Kafitz KW, Meier SD, Stephan J, Rose CR: Developmental profile and properties of sulforhodamine 101–Labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 2008, 169:84-92.
- [15]Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, Eschalier A, Fialip J: Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol 2006, 70:1246-1254.
- [16]Yashpal K, Fisher K, Chabot JG, Coderre TJ: Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain 2001, 94:17-29.
- [17]Burton AW, Lee DH, Saab C, Chung JM: Preemptive intrathecal ketamine injection produces a long-lasting decrease in neuropathic pain behaviors in a rat model. Reg Anesth Pain Med 1999, 24:208-213.
- [18]Yoshimura M, Yonehara N: Alteration in sensitivity of ionotropic glutamate receptors and tachykinin receptors in spinal cord contribute to development and maintenance of nerve injury-evoked neuropathic pain. Neurosci Res 2006, 56:21-28.
- [19]Gwak YS, Kang J, Leem JW, Hulsebosch CE: Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. J Neurosci Res 2007, 85:2352-2359.
- [20]Chaplan SR, Pogrel JW, Yaksh TL: Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 1994, 269:1117-1123.
- [21]Fukuizumi T, Ohkubo T, Kitamura K: Spinal sensitization mechanism in vincristine-induced hyperalgesia in mice. Neurosci Lett 2003, 343:89-92.
- [22]Matthews EA, Dickenson AH: Effects of ethosuximide, a T-type Ca(2+) channel blocker, on dorsal horn neuronal responses in rats. Eur J Pharmacol 2001, 415:141-149.
- [23]Matthews EA, Dickenson AH: Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 2001, 92:235-246.
- [24]Voitenko NV, Kruglikov IA, Kostyuk EP, Kostyuk PG: Effect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience 2000, 95:519-524.
- [25]Yaksh TL: Calcium channels as therapeutic targets in neuropathic pain. J Pain 2006, 7:S13-S30.
- [26]Lee MJ, Shin TJ, Lee JE, Choo H, Koh HY, Chung HJ, Pae AN, Lee SC, Kim HJ: KST5468, a new T-type calcium channel antagonist, has an antinociceptive effect on inflammatory and neuropathic pain models. Pharmacol Biochem Behav 2010, 97:198-204.
- [27]Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288:1765-1769.
- [28]Larsson M: Ionotropic glutamate receptors in spinal nociceptive processing. Mol Neurobiol 2009, 40:260-288.
- [29]Sandkuhler J: Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 2009, 89:707-758.
- [30]Larsson M, Broman J: Synaptic Plasticity and Pain: Role of Ionotropic Glutamate Receptors. Neuroscientist 2011, 17(3):256-273.
- [31]Nagy GG, Al-Ayyan M, Andrew D, Fukaya M, Watanabe M, Todd AJ: Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J Neurosci 2004, 24:5766-5777.
- [32]Nagy GG, Watanabe M, Fukaya M, Todd AJ: Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique. Eur J Neurosci 2004, 20:3301-3312.
- [33]Hegarty DM, Mitchell JL, Swanson KC, Aicher SA: Kainate receptors are primarily postsynaptic to SP-containing axon terminals in the trigeminal dorsal horn. Brain Res 2007, 1184:149-159.
- [34]Lee CJ, Kong H, Manzini MC, Albuquerque C, Chao MV, MacDermott AB: Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci 2001, 21:4572-4581.
- [35]Guo W, Zou S, Tal M, Ren K: Activation of spinal kainate receptors after inflammation: behavioral hyperalgesia and subunit gene expression. Eur J Pharmacol 2002, 452:309-318.
- [36]Pitcher MH, Ribeiro-da-Silva A, Coderre TJ: Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors. J Comp Neurol 2007, 505:412-423.
- [37]Wang YJ, Tseng GF: Spinal axonal injury transiently elevates the level of metabotropic glutamate receptor 5, but not 1, in cord-projection central neurons. J Neurotrauma 2004, 21:479-489.
- [38]Miura M, Watanabe M, Offermanns S, Simon MI, Kano M: Group I metabotropic glutamate receptor signaling via Galpha q/Galpha 11 secures the induction of long-term potentiation in the hippocampal area CA1. J Neurosci 2002, 22:8379-8390.
- [39]Azkue JJ, Liu XG, Zimmermann M, Sandkuhler J: Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors. Pain 2003, 106:373-379.
- [40]Derjean D, Bertrand S, Le Masson G, Landry M, Morisset V, Nagy F: Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 2003, 6:274-281.
- [41]Lefebvre C, Fisher K, Cahill CM, Coderre TJ: Evidence that DHPG-induced nociception depends on glutamate release from primary afferent C-fibres. Neuroreport 2000, 11:1631-1635.
- [42]Soliman AC, Yu JS, Coderre TJ: mGlu and NMDA receptor contributions to capsaicin-induced thermal and mechanical hypersensitivity. Neuropharmacology 2005, 48:325-332.
- [43]Young MR, Fleetwood-Walker SM, Dickinson T, Blackburn-Munro G, Sparrow H, Birch PJ, Bountra C: Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res 1997, 777:161-169.
- [44]Young MR, Fleetwood-Walker SM, Mitchell R, Munro FE: Evidence for a role of metabotropic glutamate receptors in sustained nociceptive inputs to rat dorsal horn neurons. Neuropharmacology 1994, 33:141-144.
- [45]Flynn JR, Brichta AM, Galea MP, Callister RJ, Graham BA: A horizontal slice preparation for examining the functional connectivity of dorsal column fibres in mouse spinal cord. J Neurosci Methods 2011, 200:113-120.
- [46]Cheng LZ, Lu N, Zhang YQ, Zhao ZQ: Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice. Mol Pain 2010, 6:1. BioMed Central Full Text
- [47]Jakowec MW, Yen L, Kalb RG: In situ hybridization analysis of AMPA receptor subunit gene expression in the developing rat spinal cord. Neuroscience 1995, 67:909-920.
- [48]Brown KM, Wrathall JR, Yasuda RP, Wolfe BB: Quantitative measurement of glutamate receptor subunit protein expression in the postnatal rat spinal cord. Brain Res Dev Brain Res 2002, 137:127-133.
- [49]Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA: Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 1995, 15:6498-6508.
- [50]Jakowec MW, Fox AJ, Martin LJ, Kalb RG: Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience 1995, 67:893-907.
- [51]Kalb RG, Lidow MS, Halsted MJ, Hockfield S: N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn. Proc Natl Acad Sci U S A 1992, 89:8502-8506.
- [52]Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12:529-540.
- [53]Portera-Cailliau C, Price DL, Martin LJ: N-methyl-D-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies. J Neurochem 1996, 66:692-700.
- [54]Torsney C, MacDermott AB: Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26:1833-1843.
- [55]Heinke B, Balzer E, Sandkuhler J: Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 2004, 19:103-111.
- [56]McDougal DH, Hermann GE, Rogers RC: Vagal afferent stimulation activates astrocytes in the nucleus of the solitary tract via AMPA receptors: evidence of an atypical neural-glial interaction in the brainstem. J Neurosci 2011, 31:14037-14045.
- [57]Winship IR, Plaa N, Murphy TH: Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 2007, 27:6268-6272.
- [58]Zur Nieden R, Deitmer JW: The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex 2006, 16:676-687.
- [59]Kirischuk S, Verkhratsky A: [Ca2+]i recordings from neural cells in acutely isolated cerebellar slices employing differential loading of the membrane-permeant form of the calcium indicator fura-2. Pflugers Arch 1996, 431:977-983.
- [60]Mayer ML, Westbrook GL, Guthrie PB: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984, 309:261-263.
- [61]Watanabe M, Mishina M, Inoue Y: Distinct spatiotemporal distributions of the N-methyl-D-aspartate receptor channel subunit mRNAs in the mouse cervical cord. J Comp Neurol 1994, 345:314-319.
- [62]Hartwick AT, Hamilton CM, Baldridge WH: Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J Physiol 2008, 586:3425-3446.
- [63]Engelman HS, Allen TB, MacDermott AB: The distribution of neurons expressing calcium-permeable AMPA receptors in the superficial laminae of the spinal cord dorsal horn. J Neurosci 1999, 19:2081-2089.
- [64]Youn DH, Voitenko N, Gerber G, Park YK, Galik J, Randic M: Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLU(K6)-deficient mice. Brain Res Mol Brain Res 2005, 142:9-18.
- [65]Urban L, Thompson SW, Dray A: Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 1994, 17:432-438.
- [66]Fang L, Wu J, Zhang X, Lin Q, Willis WD: Increased phosphorylation of the GluR1 subunit of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor in rats following intradermal injection of capsaicin. Neuroscience 2003, 122:237-245.
- [67]Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R: PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003, 6:136-143.
- [68]Zou X, Lin Q, Willis WD: Effect of protein kinase C blockade on phosphorylation of NR1 in dorsal horn and spinothalamic tract cells caused by intradermal capsaicin injection in rats. Brain Res 2004, 1020:95-105.
- [69]Brenner GJ, Ji RR, Shaffer S, Woolf CJ: Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. Eur J Neurosci 2004, 20:375-384.
- [70]Ultenius C, Linderoth B, Meyerson BA, Wallin J: Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett 2006, 399:85-90.
- [71]Chen L, Huang LY: Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 1992, 356:521-523.
- [72]Scotland PE, Coderre TJ: Enhanced 3,5-dihydroxyphenylglycine-induced sustained nociceptive behaviors in rats with neuropathy or chronic inflammation. Behav Brain Res 2007, 184:150-156.
- [73]Isaac JT, Ashby MC, McBain CJ: The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 2007, 54:859-871.
- [74]Liu SJ, Zukin RS: Ca2 + −permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 2007, 30:126-134.
- [75]Park JS, Voitenko N, Petralia RS, Guan X, Xu JT, Steinberg JP, Takamiya K, Sotnik A, Kopach O, Huganir RL, Tao YX: Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci 2009, 29:3206-3219.
- [76]Park JS, Yaster M, Guan X, Xu JT, Shih MH, Guan Y, Raja SN, Tao YX: Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain. Mol Pain 2008, 4:67. BioMed Central Full Text
- [77]Bardoni R, Ghirri A, Zonta M, Betelli C, Vitale G, Ruggieri V, Sandrini M, Carmignoto G: Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol 2010, 588:831-846.
- [78]Balasubramanyan S, Stemkowski PL, Stebbing MJ, Smith PA: Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons. J Neurophysiol 2006, 96:579-590.
- [79]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
PDF