期刊论文详细信息
Retrovirology
Localization, quantification and interaction with host factors of endogenous HTLV-1 HBZ protein in infected cells and ATL
Roberto S Accolla2  Antoine Gessain1  Giovanna Tosi2  Greta Forlani2  Carlo Bidoia2  Goutham U Raval2 
[1] Département de Virologie, Institut Pasteur, Paris, 75015, France;Department of Surgical and Morphological Sciences, School of Medicine, University of Insubria, Via Ottorino Rossi n.9, Varese, 21100, Italy
关键词: Monoclonal antibodies;    Adult T cell leukemia;    HBZ;    HTLV-1;   
Others  :  1221133
DOI  :  10.1186/s12977-015-0186-0
 received in 2015-03-31, accepted in 2015-06-24,  发布年份 2015
PDF
【 摘 要 】

Background

Human T cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of a severe form of neoplasia designated Adult T cell Leukaemia (ATL). It is widely accepted that the viral transactivator Tax-1 is the major viral product involved in the onset, but not in the maintenance, of neoplastic phenotype, as only 30–40% of ATL cells express Tax-1. It has been recently demonstrated that HBZ (HTLV-1 bZIP factor), a protein encoded by the minus strand of HTLV-1 genome, constantly expressed in infected cells and in ATL tumor cells, is also involved in the pathogenesis of leukaemia. The full role played by HBZ in oncogenesis is not clarified in detail also because of the limited availability of tools to assess quantitative expression, subcellular location and interaction of HBZ with host factors in ATL.

Results

By the use of the first reported monoclonal antibody against HBZ, 4D4-F3, generated in our laboratory it has been possible to carefully assess for the first time the above parameters in HTLV-1 chronically infected cells and, most importantly, in fresh leukemic cells from patients. Endogenous HBZ is expressed in speckle-like structures localized in the nucleus. The calculated number of endogenous HBZ molecules varies between 17.461 and 39.615 molecules per cell, 20- to 50-fold less than the amount expressed in HBZ transfected cells used by most investigators to assess the expression, function and subcellular localization of the viral protein. HBZ interacts in vivo with p300 and JunD and co-localizes only partially, and depending on the amount of expressed HBZ, not only with p300 and JunD but also with CBP and CREB2.

Conclusions

The possibility to study endogenous HBZ in detail may significantly contribute to a better delineation of the role of HBZ during HTLV-1 infection and cellular transformation.

【 授权许可】

   
2015 Raval et al.

【 预 览 】
附件列表
Files Size Format View
20150727090526777.pdf 2440KB PDF download
Figure8. 82KB Image download
Figure7. 105KB Image download
Figure6. 96KB Image download
Figure5. 20KB Image download
Figure4. 26KB Image download
Figure3. 95KB Image download
Figure2. 46KB Image download
Figure1. 37KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

Figure8.

【 参考文献 】
  • [1]Poiesz B, Ruscetti F, Gazdar A, Bunn P, Minna J, Gallo R. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980; 77:7415-7419.
  • [2]Matsuura E, Yamano Y, Jacobson S. Neuroimmunity of HTLV-I Infection. J Neuroimmune Pharmacol. 2010; 5:310-325.
  • [3]Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012; 3:388.
  • [4]Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007; 7:270-280.
  • [5]Grassmann R, Aboud M, Jeang K-T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene. 2005; 24:5976-5985.
  • [6]Larocca D, Chao LA, Seto MH, Brunck TK. Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem Biophys Res Commun. 1989; 163:1006-1013.
  • [7]Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM. The complementary strand of the Human T-Cell Leukemia Virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol. 2002; 76:12813-12822.
  • [8]Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA. 2006; 103:720-725.
  • [9]Arnold J, Yamamoto B, Li M, Phipps AJ, Younis I, Lairmore MD et al.. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood. 2006; 107:3976-3982.
  • [10]Cavanagh M-H, Landry S, Audet B, Arpin-Andre C, Hivin P, Pare M-E et al.. HTLV-I antisense transcripts initiating in the 3′ LTR are alternatively spliced and polyadenylated. Retrovirology. 2006; 3:15. BioMed Central Full Text
  • [11]Murata K, Hayashibara T, Sugahara K, Uemura A, Yamaguchi T, Harasawa H et al.. A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J Virol. 2006; 80:2495-2505.
  • [12]Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard J-M. The HBZ factor of Human T-cell Leukemia Virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem. 2003; 278:43620-43627.
  • [13]Gazon H, Lemasson I, Polakowski N, Césaire R, Matsuoka M, Barbeau B et al.. Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3′ long terminal repeat. J Virol. 2012; 86:9070-9078.
  • [14]Thebault S, Basbous J, Hivin P, Devaux C, Mesnard J-M. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett. 2004; 562:165-170.
  • [15]Matsuoka M, Yasunaga JI. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013; 3:684-691.
  • [16]Clerc I, Polakowski N, Andre´-Arpin C, Cook P, Barbeau B, Mesnard J-M et al.. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of Tax-dependent viral transcription by HBZ. J Biol Chem. 2008; 283:23903-23913.
  • [17]Zhao T, Yasunaga J-I, Satou Y, Nakao M, Takahashi M, Fujii M et al.. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kB. Blood. 2009; 113:2755-2764.
  • [18]Ma G, Yasunaga J, Fan J, Yanagawa S, Matsuoka M. HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T-cell leukemia cells. Oncogene. 2013; 32:4222-4230.
  • [19]Sugata K, Satou Y, Yasunaga J-I, Hara H, Ohshima K, Utsunomiya A et al.. HTLV-1 bZIP factor impairs cell-mediated immunity by suppressing production of Th1 cytokines. Blood. 2012; 119:434-444.
  • [20]Kuhlmann A-S, Julien Villaudy J, Gazzolo L, Castellazzi M, Mesnard J-M, Duc Dodon M. HTLV-1 HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology. 2007; 4:92. BioMed Central Full Text
  • [21]Hagiya K, Yasunaga J-I, Satou Y, Ohshima K, Matsuoka M. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology. 2011; 8:19. BioMed Central Full Text
  • [22]Zhao T, Coutts A, Xu L, Yu J, Ohshima K, Matsuoka M. HTLV-1 bZIP factor supports proliferation of adult T cell leukemia cells through suppression of C/EBPα signaling. Retrovirology. 2013; 10:159. BioMed Central Full Text
  • [23]Zhao T, Satou Y, Sugata K, Miyazato P, Green PL, Imamura T et al.. HTLV-1 bZIP factor enhances TGF-beta signaling through p300 coactivator. Blood. 2011; 118:1865-1876.
  • [24]Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J et al.. Expression of FoxP3, a key molecule in CD4+ CD25+ regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004; 126:81-84.
  • [25]Satou Y, Yasunaga J, Zhao T, Yoshida M, Miyazato P, Takai K et al.. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog. 2011; 7:e1001274.
  • [26]Toulza F, Nosaka K, Takiguchi M, Pagliuca T, Mitsuya H, Tanaka Y et al.. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1–associated adult T-cell leukemia. Int J Cancer. 2009; 125:2375-2382.
  • [27]Shirono K, Hattori T, Matsuoka M, Matsushita S, Asou N, Takatsuki K. Adult T cell leukemia cell lines that originated from primary leukemic clones also had a defect of expression of CD3-T cell receptor complex. Leukemia. 1988; 2:728-733.
  • [28]Suzushima H, Asou N, Hattori T, Takatsuki K. Adult T-cell leukemia derived from S100 beta positive double-negative (CD4− CD8−) T cells. Leuk Lymphoma. 1994; 13:257-262.
  • [29]Ariumi Y, Ego T, Kaida A, Matsumoto M, Pandolfi PP, Shimotohno K. Distinct nuclear body components, PML and SMRT, regulate the trans-acting function of HTLV-1 Tax oncoprotein. Oncogene. 2003; 22:1611-1619.
  • [30]Suemori K, Fujiwara H, Ochi T, Ogawa T, Matsuoka M, Matsumoto T et al.. HBZ is an immunogenic protein, but not a target antigen for human T-cell leukemia virus type 1-specific cytotoxic T lymphocytes. J Gen Virol. 2009; 90:1806-1811.
  • [31]Hilburn S, Rowan A, Demontis MA, MacNamara A, Asquith B, Bangham CRM et al.. In vivo expression of human T-lymphotropic virus type 1 basic leucine-Zipper protein generates specific CD8+ and CD4+ T-lymphocyte responses that correlate with clinical outcome. J Infect Dis. 2011; 203:529-536.
  • [32]Toulza F, Heaps A, Tanaka Y, Taylor GP, Bangham CR. High frequency of CD4+ FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood. 2008; 111:5047-5053.
  • [33]Hivin P, Basbous J, Raymond F, Henaff D, Arpin-André C, Robert-Hebmann V et al.. The HBZ-SP1 isoform of human T-cell leukemia virus type I represses JunB activity by sequestration into nuclear bodies. Retrovirology. 2007; 4:14. BioMed Central Full Text
  • [34]Balestrieri E, Ascolani A, Igarashi Y, Oki T, Mastino A, Balzarini J et al.. Inhibition of cell-to-cell transmission of Human T-cell lymphotopic virus type 1 in vitro by carbohydrate-binding agents. Antimicrob Agents Chemother. 2008; 52:2771-2779.
  • [35]Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K et al.. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer. 2004; 109:559-567.
  • [36]Cassar O, Capuano C, Bassot S, Charavay F, Duprez R, Afonso PV et al.. Human T lymphotropic virus type 1 subtype C melanesian genetic variants of the Vanuatu archipelago and Solomon islands share a common ancestor. J Infect Dis. 2007; 196:510-521.
  • [37]Pellegrini FP, Marinoni M, Frangione V, Tedeschi A, Gandini G, Ciglia F et al.. Down syndrome, autoimmunity and T regulatory cells. Clin Exp Immunol. 2012; 169:238-243.
  • [38]Accolla RS, Carrel S, Mach J-P. Monoclonal antibodies specific for carcinoembryonic antigen and produced by two hybrid cell lines. Proc Natl Acad Sci USA. 1980; 77:563-566.
  • [39]Tosi G, Forlani G, Andresen V, Turci M, Bertazzoni U, Franchini G et al.. Major histocompatibility complex class II transactivator CIITA is a viral restriction factor that targets human T-cell lymphotropic virus type 1 Tax-1 function and inhibits viral replication. J Virol. 2011; 85:10719-10729.
  • [40]Accolla RS. Analysis of the structural heterogeneity and polymorphism of human Ia antigens. Four distinct subsets of molecules are coexpressed in the Ia pool of both DR1, 1 homozygous and DR3, W6 heterozigous B cell lines. J Exp Med. 1983; 159:378-393.
  文献评价指标  
  下载次数:20次 浏览次数:0次