期刊论文详细信息
Retrovirology
An integrated map of HIV genome-wide variation from a population perspective
Kristof Theys2  Anne-Mieke Vandamme5  Philippe Lemey2  Ricardo Khouri3  Andrea-Clemencia Pineda-Peña4  Arnout Voet1  Nuno Rodrigues Faria6  Supinya Piampongsant2  Guangdi Li2 
[1] Zhang IRU, RIKEN Institute Laboratories, Hirosawa 2-1, Wako-shi, Saitama, Japan;Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium;LIMI-LIP, Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador-Bahia, Brasil;Clinical and Molecular Infectious Disease Group, Faculty of Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia;Centro de Malária e Outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal;Department of Zoology, University of Oxford, Oxford OX1-3PS, UK
关键词: Protein intrinsic disorder;    Protein multimerization;    Selective pressure;    HIV inter- and inter-clade genetic diversity;    HIV phylogenetic tree;    HIV-human protein interaction;    Peptide inhibitor;    Conservation;    Genomic diversity;    HIV genome;   
Others  :  1174978
DOI  :  10.1186/s12977-015-0148-6
 received in 2014-07-11, accepted in 2015-01-28,  发布年份 2015
PDF
【 摘 要 】

Background

The HIV pandemic is characterized by extensive genetic variability, which has challenged the development of HIV drugs and vaccines. Although HIV genomes have been classified into different types, groups, subtypes and recombinants, a comprehensive study that maps HIV genome-wide diversity at the population level is still lacking to date. This study aims to characterize HIV genomic diversity in large-scale sequence populations, and to identify driving factors that shape HIV genome diversity.

Results

A total of 2996 full-length genomic sequences from 1705 patients infected with 16 major HIV groups, subtypes and circulating recombinant forms (CRFs) were analyzed along with structural, immunological and peptide inhibitor information. Average nucleotide diversity of HIV genomes was almost 50% between HIV-1 and HIV-2 types, 37.5% between HIV-1 groups, 14.7% between HIV-1 subtypes, 8.2% within individual HIV-1 subtypes and less than 1% within single patients. Along the HIV genome, diversity patterns and compositions of nucleotides and amino acids were highly similar across different groups, subtypes and CRFs. Current HIV-derived peptide inhibitors were predominantly derived from conserved, solvent accessible and intrinsically ordered structures in the HIV-1 subtype B genome. We identified these conserved regions in Capsid, Nucleocapsid, Protease, Integrase, Reverse transcriptase, Vpr and the GP41 N terminus as potential drug targets. In the analysis of factors that impact HIV-1 genomic diversity, we focused on protein multimerization, immunological constraints and HIV-human protein interactions. We found that amino acid diversity in monomeric proteins was higher than in multimeric proteins, and diversified positions were preferably located within human CD4 T cell and antibody epitopes. Moreover, intrinsic disorder regions in HIV-1 proteins coincided with high levels of amino acid diversity, facilitating a large number of interactions between HIV-1 and human proteins.

Conclusions

This first large-scale analysis provided a detailed mapping of HIV genomic diversity and highlighted drug-target regions conserved across different groups, subtypes and CRFs. Our findings suggest that, in addition to the impact of protein multimerization and immune selective pressure on HIV-1 diversity, HIV-human protein interactions are facilitated by high variability within intrinsically disordered structures.

【 授权许可】

   
2015 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150425084149660.pdf 2905KB PDF download
Figure 6. 260KB Image download
Figure 2. 72KB Image download
Figure 4. 175KB Image download
Figure 3. 147KB Image download
Figure 2. 285KB Image download
Figure 1. 191KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 2.

Figure 6.

【 参考文献 】
  • [1]Hemelaar J: The origin and diversity of the HIV-1 pandemic. Trends Mol Med 2012, 18:182-92.
  • [2]Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, et al.: Diversity considerations in HIV-1 vaccine selection. Science 2002, 296:2354-60.
  • [3]Frankel AD, Young JA: HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 1998, 67:1-25.
  • [4]Engelman A, Cherepanov P: The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 2012, 10:279-90.
  • [5]Acosta EG, Kumar A, Bartenschlager R: Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv Virus Res 2014, 88:1-109.
  • [6]Perry CM: Elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (Stribild(R)): a review of its use in the management of HIV-1 infection in adults. Drugs 2014, 74:75-97.
  • [7]Tilton JC, Doms RW: Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res 2010, 85:91-100.
  • [8]Fauci AS, Folkers GK, Dieffenbach CW: HIV-AIDS: much accomplished, much to do. Nat Immunol 2013, 14:1104-7.
  • [9]Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K: Functional conservation of HIV-1 gag: implications for rational drug design. Retrovirology 2013, 10:126. BioMed Central Full Text
  • [10]Stephenson KE, Barouch DH: A global approach to HIV-1 vaccine development. Immunol Rev 2013, 254:295-304.
  • [11]Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, Sanders-Buell E, et al.: Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med 2011, 17:366-71.
  • [12]Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E, Hertz T, et al.: Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 2012, 490:417-20.
  • [13]Arien KK, Vanham G, Arts EJ: Is HIV-1 evolving to a less virulent form in humans? Nat Rev Microbiol 2007, 5:141-51.
  • [14]Herbeck JT, Rolland M, Liu Y, McLaughlin S, McNevin J, Zhao H, et al.: Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes. J Virol 2011, 85:7523-34.
  • [15]Rousseau CM, Birditt BA, McKay AR, Stoddard JN, Lee TC, McLaughlin S, et al.: Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. J Virol Methods 2006, 136:118-25.
  • [16]Wang YE, Li B, Carlson JM, Streeck H, Gladden AD, Goodman R, et al.: Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. J Virol 2009, 83:1845-55.
  • [17]Brown BK, Darden JM, Tovanabutra S, Oblander T, Frost J, Sanders-Buell E, et al.: Biologic and genetic characterization of a panel of 60 human immunodeficiency virus type 1 isolates, representing clades A, B, C, D, CRF01_AE, and CRF02_AG, for the development and assessment of candidate vaccines. J Virol 2005, 79:6089-101.
  • [18]Fernandez-Garcia A, Cuevas MT, Munoz-Nieto M, Ocampo A, Pinilla M, Garcia V, et al.: Development of a panel of well-characterized human immunodeficiency virus type 1 isolates from newly diagnosed patients including acute and recent infections. AIDS Res Hum Retroviruses 2009, 25:93-102.
  • [19]Kousiappa I, Van De Vijver DA, Kostrikis LG: Near full-length genetic analysis of HIV sequences derived from Cyprus: evidence of a highly polyphyletic and evolving infection. AIDS Res Hum Retroviruses 2009, 25:727-40.
  • [20]Sanabani SS, Pessoa R, Soares de Oliveira AC, Martinez VP, Giret MT, de Menezes Succi RC, et al.: Variability of HIV-1 genomes among children and adolescents from Sao Paulo, Brazil. PLoS One 2013, 8:e62552.
  • [21]Fernandez-Garcia A, Revilla A, Vazquez-de Parga E, Vinogradova A, Rakhmanova A, Karamov E, et al.: The analysis of near full-length genome sequences of HIV type 1 subtype A viruses from Russia supports the monophyly of major intrasubtype clusters. AIDS Res Hum Retroviruses 2012, 28:1340-3.
  • [22]Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR, et al.: Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog 2012, 8:e1002529.
  • [23]Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M: Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 1987, 326:662-9.
  • [24]Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V: Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 2001, 58:19-42.
  • [25]van der Kuyl AC, Berkhout B: The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012, 9:92. BioMed Central Full Text
  • [26]Snoeck J, Fellay J, Bartha I, Douek DC, Telenti A: Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology 2011, 8:87. BioMed Central Full Text
  • [27]Mayrose I, Stern A, Burdelova EO, Sabo Y, Laham-Karam N, Zamostiano R, et al.: Synonymous site conservation in the HIV-1 genome. BMC Evol Biol 2013, 13:164. BioMed Central Full Text
  • [28]Santoro MM, Perno CF: HIV-1 Genetic Variability and Clinical Implications. ISRN Microbiol 2013, 2013:481314.
  • [29]Hemelaar J, Gouws E, Ghys PD, Osmanov S: Isolation W-UNfH, Characterisation: Global trends in molecular epidemiology of HIV-1 during 2000-2007. AIDS 2011, 25:679-89.
  • [30]Xue B, Mizianty MJ, Kurgan L, Uversky VN: Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012, 69:1211-59.
  • [31]Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. Engl J Med. 2012;366:1275–86.
  • [32]Boons E, Li G, Vanstreels E, Vercruysse T, Pannecouque C, Vandamme A-M, et al.: A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity. Antiviral Research 2014, 112:91-102.
  • [33]Rambaut A, Posada D, Crandall KA, Holmes EC: The causes and consequences of HIV evolution. Nat Rev Genet 2004, 5:52-61.
  • [34]Falkowski PG, Fenchel T, Delong EF: The microbial engines that drive Earth's biogeochemical cycles. Science 2008, 320:1034-9.
  • [35]Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW: Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001, 26:740-6.
  • [36]Buck PM, Kumar S, Singh SK: On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 2013, 9:e1003291.
  • [37]Li G, Theys K, Verheyen J, Pineda-Pena A, Khouri R, Piampongsant S, et al.: A new ensemble coevolution system for detecting HIV-1 protein coevolution. Biol Direct 2015, 10:1. BioMed Central Full Text
  • [38]Zolla-Pazner S, Cardozo T: Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010, 10:527-35.
  • [39]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al.: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-70.
  • [40]Burnett JC, Zaia JA, Rossi JJ: Creating genetic resistance to HIV. Curr Opin Immunol 2012, 24:625-32.
  • [41]He Y: Synthesized peptide inhibitors of HIV-1 gp41-dependent membrane fusion. Curr Pharm Des 2013, 19:1800-9.
  • [42]Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR: Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 2012, 8:e1002477.
  • [43]Durrant JD, McCammon JA: Molecular dynamics simulations and drug discovery. BMC Biol 2011, 9:71. BioMed Central Full Text
  • [44]Liu S, Lu H, Niu J, Xu Y, Wu S, Jiang S: Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 2005, 280:11259-73.
  • [45]Rolland M, Nickle DC, Mullins JI: HIV-1 group M conserved elements vaccine. PLoS Pathog 2007, 3:e157.
  • [46]Kwong PD, Mascola JR, Nabel GJ: Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013, 13:693-701.
  • [47]Li G, Verheyen J, Theys K, Piampongsant S, Van Laethem K, Vandamme AM: HIV-1 Gag C-terminal amino acid substitutions emerging under selective pressure of protease inhibitors in patient populations infected with different HIV-1 subtypes. Retrovirology 2014, 11:79. BioMed Central Full Text
  • [48]Pineda-Pena AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K, et al.: Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect Genet Evol 2013, 19:337-48.
  • [49]Struck D, Lawyer G, Ternes AM, Schmit JC, Bercoff DP: COMET: adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res 2015, 42:e144.
  • [50]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-7.
  • [51]Gouy M, Guindon S, Gascuel O: SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-4.
  • [52]Hooft RW, Vriend G, Sander C, Abola EE: Errors in protein structures. Nature 1996, 381:272.
  • [53]Pinney JW, Dickerson JE, Fu W, Sanders-Beer BE, Ptak RG, Robertson DL: HIV-host interactions: a map of viral perturbation of the host system. AIDS 2009, 23:549-54.
  • [54]Llano A, Frahm N, Brander C: How to optimally define optimal cytotoxic T lymphocyte epitopes in HIV infection. HIV Mol Immunol 2009, 2009:3-24.
  • [55]Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT: Protein annotation and modelling servers at University College London. Nucleic Acids Res 2010, 38:W563-8.
  • [56]Klose DP, Wallace BA, Janes RW: 2Struc: the secondary structure server. Bioinformatics 2010, 26:2624-5.
  • [57]Ishida T, Kinoshita K: Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 2008, 24:1344-8.
  • [58]Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z: Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006, 7:208. BioMed Central Full Text
  • [59]Deng X, Eickholt J, Cheng J: PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinformatics 2009, 10:436. BioMed Central Full Text
  • [60]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.: UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25:1605-12.
  • [61]Levy ED: A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol 2010, 403:660-70.
  • [62]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
  • [63]Pond SL, Frost SD, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21:676-9.
  • [64]Spira S, Wainberg MA, Loemba H, Turner D, Brenner BG: Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance. J Antimicrob Chemother 2003, 51:229-40.
  • [65]Li G: HIV genome-wide diversity, interaction and coevolution. Doctoral thesis. University of Leuven, Faculty of medicine; 2014. (https://lirias.kuleuven.be/handle/123456789/460408)
  文献评价指标  
  下载次数:0次 浏览次数:10次