期刊论文详细信息
Molecular Pain
Subunit and frequency-dependent inhibition of Acid Sensing Ion Channels by local anesthetic tetracaine
Zhi-Gang Xiong2  James E Cottrell1  Jun Lin1  Tiandong Leng2 
[1] Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA;Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
关键词: Frequency-dependent inhibition;    Tetracaine;    Local anesthetics;    ASIC;   
Others  :  862468
DOI  :  10.1186/1744-8069-9-27
 received in 2013-03-01, accepted in 2013-06-05,  发布年份 2013
PDF
【 摘 要 】

Background

Extracellular acidosis is a prominent feature of multiple pathological conditions, correlating with pain sensation. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are distributed throughout the central and peripheral nervous systems. Activation of ASICs, particularly ASIC3 and ASIC1a channels, by acidic pH and the resultant depolarization of nociceptive primary sensory neurons, participates in nociception. Agents that inhibit the activation of ASICs are thus expected to be analgesic. Here, we studied the effect of local anesthetic tetracaine on ASIC currents.

Results

Tetracaine inhibited the peak ASIC3 current in a concentration-dependent manner with an IC50 of 9.96 ± 1.88 mM. The degree of inhibition by tetracaine was dependent on the extracellular pH but independent of the membrane potential. Furthermore, 3 mM tetracaine also inhibited 29.83% of the sustained ASIC3 current. In addition to ASIC3, tetracaine inhibited the ASIC1a and ASIC1β currents. The inhibition of the ASIC1a current was influenced by the frequency of channel activation. In contrast to ASIC3, ASIC1a, and ASIC1β currents, ASIC2a current was not inhibited by tetracaine. In cultured mouse dorsal root ganglion neurons, 1–3 mM tetracaine inhibited both the transient and sustained ASIC currents. At pH4.5, 3 mM tetracaine reduced the peak ASIC current to 60.06 ± 4.51%, and the sustained current to 48.24 ± 7.02% of the control values in dorsal root ganglion neurons. In contrast to ASICs, voltage-gated sodium channels were inhibited by acid, with 55.15% inhibition at pH6.0 and complete inhibition at pH5.0.

Conclusions

These findings disclose a potential new mechanism underlying the analgesic effects of local anesthetics, particularly in acidic conditions where their primary target (i.e. voltage-gated Na+ channel) has been suppressed by protons.

【 授权许可】

   
2013 Leng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725014412370.pdf 1335KB PDF download
49KB Image download
74KB Image download
58KB Image download
71KB Image download
60KB Image download
89KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Krishtal OA, Pidoplichko VI: A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 1981, 6:2599-2601.
  • [2]Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M: A proton-gated cation channel involved in acid-sensing. Nature 1997, 386:173-177.
  • [3]Waldmann R, Lazdunski M: H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 1998, 8:418-424.
  • [4]Deval E, Gasull X, Noel J, Salinas M, Baron A, Diochot S, Lingueglia E: Acid-sensing ion channels (ASICs): Pharmacology and implication in pain. Pharmacol Ther 2010, 128:549-558.
  • [5]Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M: Molecular cloning of a non-inactivating proton-gated Na + channel specific for sensory neurons. J Biol Chem 1997, 272:20975-20978.
  • [6]Chen CC, England S, Akopian AN, Wood JN: A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A 1998, 95:10240-10245.
  • [7]Bassler EL, Ngo-Anh TJ, Geisler HS, Ruppersberg JP, Grunder S: Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 2001, 276:33782-33787.
  • [8]Grunder S, Chen X: Structure, function, and pharmacology of acid-sensing ion channels (ASICs): Focus on ASIC1a. Int J Physiol Pathophysiol Pharmacol 2010, 2:73-94.
  • [9]de Weille JR, Bassilana F, Lazdunski M, Waldmann R: Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett 1998, 433:257-260.
  • [10]Ugawa S, Ueda T, Takahashi E, Hirabayashi Y, Yoneda T, Komai S, Shimada S: Cloning and functional expression of ASIC-beta2, a splice variant of ASIC-beta. Neuroreport 2001, 12:2865-2869.
  • [11]Waldmann R, Champigny G, Lingueglia E, de Weille JR, Heurteaux C, Lazdunski M: H(+)-gated cation channels. Ann N Y Acad Sci 1999, 868:67-76.
  • [12]Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R, Lazdunski M: A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 1997, 272:29778-29783.
  • [13]Grunder S, Geissler HS, Bassler EL, Ruppersberg JP: A new member of acid-sensing ion channels from pituitary gland. Neuroreport 2000, 11:1607-1611.
  • [14]Akopian AN, Chen CC, Ding Y, Cesare P, Wood JN: A new member of the acid-sensing ion channel family. Neuroreport 2000, 11:2217-2222.
  • [15]Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S: Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 2002, 110:1185-1190.
  • [16]Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sanchez EE, Burlingame AL, Basbaum AI, Julius D: A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011, 479:410-414.
  • [17]Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E: ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 2008, 27:3047-3055.
  • [18]Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gelot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M: A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci 2007, 10:943-945.
  • [19]Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL: Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 2007, 27:11139-11148.
  • [20]Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ: The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002, 34:463-477.
  • [21]Johnson MB, Jin K, Minami M, Chen D, Simon RP: Global ischemia induces expression of acid-sensing ion channel 2a in rat brain. J Cereb Blood Flow Metab 2001, 21:734-740.
  • [22]Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP: Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004, 118:687-698.
  • [23]Pignataro G, Cuomo O, Esposito E, Sirabella R, Di Renzo G, Annunziato L: ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. Int J Physiol Pathophysiol Pharmacol 2011, 3:1-8.
  • [24]Chu XP, Papasian CJ, Wang JQ, Xiong ZG: Modulation of acid-sensing ion channels: Molecular mechanisms and therapeutic potential. Int J Physiol Pathophysiol Pharmacol 2011, 3:288-309.
  • [25]Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA III, Welsh MJ, Wemmie JA: Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 2008, 11:816-822.
  • [26]Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L: Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 2007, 13:1483-1489.
  • [27]Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, Benos DJ: Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem 2009, 284:24526-24541.
  • [28]Li M, Xiong ZG: Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 2011, 3:156-166.
  • [29]Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA: Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 2011, 152:2348-2356.
  • [30]Issberner U, Reeh PW, Steen KH: Pain due to tissue acidosis: A mechanism for inflammatory and ischemic myalgia? Neurosci Lett 1996, 208:191-194.
  • [31]Steen KH, Reeh PW, Anton F, Handwerker HO: Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 1992, 12:86-95.
  • [32]Deval E, Baron A, Lingueglia E, Mazarguil H, Zajac JM, Lazdunski M: Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology 2003, 44:662-671.
  • [33]Steen KH, Issberner U, Reeh PW: Pain due to experimental acidosis in human skin: Evidence for non-adapting nociceptor excitation. Neurosci Lett 1995, 199:29-32.
  • [34]Wemmie JA, Price MP, Welsh MJ: Acid-sensing ion channels: Advances, questions and therapeutic opportunities. Trends Neurosci 2006, 29:578-586.
  • [35]Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ: Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 2003, 106:229-239.
  • [36]Tremont-Lukats IW, Challapalli V, McNicol ED, Lau J, Carr DB: Systemic administration of local anesthetics to relieve neuropathic pain: A systematic review and meta-analysis. Anesth Analg 2005, 101:1738-1749.
  • [37]Ferrante FM, Paggioli J, Cherukuri S, Arthur GR: The analgesic response to intravenous lidocaine in the treatment of neuropathic pain. Anesth Analg 1996, 82:91-97.
  • [38]Georgakopoulos CD, Vasilakis PT, Makri OE, Beredima E, Pharmakakis NM: Effect of Ketorolac 0.5% Drops on Patients' Pain Perception During Intravitreal Injection Procedure. J Ocul Pharmacol Ther 2012, 28:455-458.
  • [39]Butterworth JF, Strichartz GR: Molecular mechanisms of local anesthesia: A review. Anesthesiology 1990, 72:711-734.
  • [40]Mozhayeva GN, Naumov AP, Nosyreva ED: A study on the potential-dependence of proton block of sodium channels. Biochim Biophys Acta 1984, 775:435-440.
  • [41]Jones DK, Peters CH, Tolhurst SA, Claydon TW, Ruben PC: Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5. Biophys J 2011, 101:2147-2156.
  • [42]Woodhull AM: Ionic blockage of sodium channels in nerve. J Gen Physiol 1973, 61:687-708.
  • [43]Lin J, Chu X, Maysami S, Li M, Si H, Cottrell JE, Simon RP, Xiong Z: Inhibition of acid sensing ion channel currents by lidocaine in cultured mouse cortical neurons. Anesth Analg 2011, 112:977-981.
  • [44]Wang GK, Vladimirov M, Quan C, Mok WM, Thalhammer JG, Anthony DC: N-butyl tetracaine as a neurolytic agent for ultralong sciatic nerve block. Anesthesiology 1996, 85:1386-1394.
  • [45]Greene NM: Distribution of local anesthetic solutions within the subarachnoid space. Anesth Analg 1985, 64:715-730.
  • [46]Moore DC: Spinal anesthesia: Bupivacaine compared with tetracaine. Anesth Analg 1980, 59:743-750.
  • [47]Chernoff DM, Strichartz GR: Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence. Biophys J 1990, 58:69-81.
  • [48]Bevan S, Yeats J: Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J Physiol 1991, 433(145–61):145-161.
  • [49]Reeh PW, Steen KH: Tissue acidosis in nociception and pain. Prog Brain Res 1996, 113(143–51):143-151.
  • [50]Dube GR, Lehto SG, Breese NM, Baker SJ, Wang X, Matulenko MA, Honore P, Stewart AO, Moreland RB, Brioni JD: Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels. Pain 2005, 117:88-96.
  • [51]Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M: A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 2004, 23:1516-1525.
  • [52]Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr, Welsh MJ: Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 2003, 23:5496-5502.
  • [53]McKhann GM: Seizure termination by acidosis depends on ASIC1a. Neurosurgery 2008, 63:N10.
  • [54]Salinas M, Lazdunski M, Lingueglia E: Structural elements for the generation of sustained currents by the acid pain sensor ASIC3. J Biol Chem 2009, 284:31851-31859.
  • [55]Holzer P: Acid sensing by visceral afferent neurones. Acta Physiol (Oxf) 2011, 201:63-75.
  • [56]Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP: Molecular mechanisms of cancer pain. Nat Rev Cancer 2002, 2:201-209.
  • [57]Yagi J, Wenk HN, Naves LA, McCleskey EW: Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 2006, 99:501-509.
  • [58]Lingueglia E: Acid-sensing ion channels in sensory perception. J Biol Chem 2007, 282:17325-17329.
  • [59]Steen KH, Reeh PW: Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 1993, 154:113-116.
  • [60]Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000, 69(145–82):145-182.
  • [61]Voilley N, de Weille J, Mamet J, Lazdunski M: Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 2001, 21:8026-8033.
  • [62]Chen X, Grunder S: Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a. J Physiol 2007, 579:657-670.
  • [63]Gitterman DP, Wilson J, Randall AD: Functional properties and pharmacological inhibition of ASIC channels in the human SJ-RH30 skeletal muscle cell line. J Physiol 2005, 562:759-769.
  • [64]Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, Xiong ZG, Xu TL: Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 2011, 31:2101-2112.
  • [65]Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M: Zn2+ and H + are coactivators of acid-sensing ion channels. J Biol Chem 2001, 276:35361-35367.
  • [66]Li YM, Wingrove DE, Too HP, Marnerakis M, Stimson ER, Strichartz GR, Maggio JE: Local anesthetics inhibit substance P binding and evoked increases in intracellular Ca2+. Anesthesiology 1995, 82:166-173.
  • [67]Komai H, McDowell TS: Differential effects of bupivacaine and tetracaine on capsaicin-induced currents in dorsal root ganglion neurons. Neurosci Lett 2005, 380:21-25.
  • [68]Leffler A, Fischer MJ, Rehner D, Kienel S, Kistner K, Sauer SK, Gavva NR, Reeh PW, Nau C: The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest 2008, 118:763-776.
  • [69]Rivera-Acevedo RE, Pless SA, Ahern CA, Schwarz SK: The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro. Anesthesiology 2011, 114:1425-1434.
  • [70]Putrenko I, Schwarz SK: Lidocaine blocks the hyperpolarization-activated mixed cation current, I(h), in rat thalamocortical neurons. Anesthesiology 2011, 115:822-835.
  • [71]Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA: Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 2002, 543:71-84.
  • [72]Wendt DJ, Starmer CF, Grant AO: pH dependence of kinetics and steady-state block of cardiac sodium channels by lidocaine. Am J Physiol 1993, 264:H1588-H1598.
  • [73]Wallace MS, Laitin S, Licht D, Yaksh TL: Concentration-effect relations for intravenous lidocaine infusions in human volunteers: Effects on acute sensory thresholds and capsaicin-evoked hyperpathia. Anesthesiology 1997, 86:1262-1272.
  • [74]Wang GK, Quan C, Vladimirov M, Mok WM, Thalhammer JG: Quaternary ammonium derivative of lidocaine as a long-acting local anesthetic. Anesthesiology 1995, 83:1293-1301.
  • [75]Chai S, Li M, Branigan D, Xiong ZG, Simon RP: Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem 2010, 285:13002-13011.
  • [76]Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG: Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 2004, 24:8678-8689.
  • [77]Chu XP, Close N, Saugstad JA, Xiong ZG: ASIC1a-specific modulation of acid-sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci 2006, 26:5329-5339.
  文献评价指标  
  下载次数:1次 浏览次数:12次