期刊论文详细信息
Particle and Fibre Toxicology
A new real-time PCR protocol for detection of avian haemosporidians
Vasyl V. Tkach1  Alan Fecchio2  Jason D. Weckstein2  Jeffrey A. Bell1 
[1] Department of Biology, University of North Dakota, 10 Cornell Street STOP 9019, Grand Forks 58202, ND, USA;Department of Ornithology and Department of Biodiversity, Earth, and Environmental Sciences, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia 19103, PA, USA
关键词: Real-time PCR;    Leucocytozoon;    Haemoproteus;    Plasmodium;    Avian haemosporidians;   
Others  :  1222201
DOI  :  10.1186/s13071-015-0993-0
 received in 2015-05-31, accepted in 2015-07-07,  发布年份 2015
PDF
【 摘 要 】

Background

Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction.

Methods

Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR).

Results

The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ2  = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples.

Conclusions

Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.

【 授权许可】

   
2015 Bell et al.

【 预 览 】
附件列表
Files Size Format View
20150805112940524.pdf 817KB PDF download
Fig. 2. 84KB Image download
Fig. 1. 91KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Garnham PCC. Malaria parasites and other Haemosporidia. Blackwell Scientific Publications, Oxford; 1966.
  • [2]Coatney GR, Collins WE, Warren M, Contacos PG. The primate malarias. US Government Printing Office, Washington, DC; 1971.
  • [3]Schall JJ. Malaria parasites of lizards: diversity and ecology. Adv Parasitol. 1996; 37:255-333.
  • [4]Valkiūnas G. Avian malaria parasites and other Haemosporidia. CRC Press, Boca Raton, FL; 2005.
  • [5]Telford SR. Haemosporidia of Reptilia: color atlas and text. CRC Press, Boca Raton, FL; 2009.
  • [6]Cox FEG. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010; 3:5. BioMed Central Full Text
  • [7]Hay SI, Okiro EA, Gething PW, Path AP, Tatem AJ, Guerra CA, et al. Estimate the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010; doi:10.1371/journal.pmed.1000290.
  • [8]Perkins SL. Malaria’s many mates: past, present, and future of the systematics of the Order Haemosporida. J Parasitol. 2014; 100:11-25.
  • [9]Danilewsky VY. About blood parasites (Haematozoa). Russian Med. 1884; 46:948-9.
  • [10]Atkinson CT, van Riper C. Pathogenicity and epizootiology of avian hematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Bird-parasite interactions: ecology, evolution, and behavior. Loye JE, Zuk M, editors. Oxford University Press, New York; 1991: p.19-48.
  • [11]Vincke W, Lips M. Un nouveau Plasmodium d’un rongeur sauvage du Congo, Plasmodium berghi n.sp. Soc Belg Med Trop. 1948; 28:97-104.
  • [12]Ricklefs RE, Fallon SM. Diversification and host switching in avian malaria parasites. Proc R Soc Lond B Biol Sci. 2002; 269:885-92.
  • [13]Ricklefs RE, Fallon SM, Bermingham E. Evolutionary relationships, cospeciations, and host switching in avian malaria parasites. Syst Biol. 2004; 53:111-9.
  • [14]Fallon SM, Bermingham E, Ricklefs RE. Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am Nat. 2005; 165:466-80.
  • [15]Martinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008; 47:261-73.
  • [16]Ricklefs RE, Outlaw DC, Svensson-Coelho MS, Medeiros MCI, Ellis VA, Latta S. Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci USA. 2014; 111:14816-21.
  • [17]Lutz HL, Hochachka WM, Engel JI, Bell JA, Tkach VV, Bates JM, et al. Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical bids and haemosporodian parasites. PLoS One. 2015; doi:10.1371/journal.pone.0121254.
  • [18]Olsson-Pons S, Clark NJ, Ishtiaq F, Clegg SM. Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J Anim Ecol. 2015; doi:10.1111/1365-2656.12354.
  • [19]Marzal A, de Lope F, Navarro C, Møller AP. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia. 2005; 142:541-5.
  • [20]Knowles SCL, Palinauskas V, Sheldon BC. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol. 2009; 23:557-69.
  • [21]Martinez-de la Puente J, Merino S, Thomás G, Moreno J, Morales J, Lobato E et al.. The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett. 2010; 6:663-5.
  • [22]Asghar M, Hasselquist D, Bensch S. Are chronic avian haemosporidian infections costly in wild birds? J Avian Biol. 2011; 42:530-7.
  • [23]Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon B. Fitness effects of endemic malaria infections in wild bird populations: the importance of ecological structure. J Anim Ecol. 2011; 80:1196-206.
  • [24]Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science. 2015; 347:9-12.
  • [25]Bensch S, Stjernman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H et al.. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B Biol Sci. 2000; 267:1583-9.
  • [26]Hellgren O, Waldenström J, Bensch S. A new PCR assay for simultaneous studies of Leucyoctyozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol. 2004; 90:797-802.
  • [27]Waldenström J, Bensch S, Hasselquist D, Östman Ö. A new nested polymerase chain reation method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol. 2004; 90:191-4.
  • [28]Bensch S, Hellgren O, Pérez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour. 2009; 9:1353-8.
  • [29]Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Ravinder NMS, Bensch S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol. 2008; 94:1395-401.
  • [30]Jarvi SI, Farias MEM, Baker H, Friefeld HB, Baker PE, Van Gelder E et al.. Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa. Conserv Genet. 2003; 4:629-37.
  • [31]Jarvi SI, Schultz JJ, Atkinson CT. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol. 2002; 88:153-8.
  • [32]Richard FA, Sehgal RN, Jones HI, Smith TB. A comparative analysis of PCR-based detection methods of avian malaria. J Parasitol. 2002; 88:819-22.
  • [33]Durrant KL, Beadell JS, Ishtiaq F, Graves GR, Olson SL, Gering E et al.. Avian haematozoa in South America: a comparison of temperate and tropical zones. Ornithol Monogr. 2006; 60:98-111.
  • [34]Fallon SM, Ricklefs RE. Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J Avian Biol. 2008; 39:514-22.
  • [35]Fallon SM, Ricklefs RE, Swanson BL, Bermingham E. Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol. 2003; 89:1044-7.
  • [36]Fecchio A, Lima MR, Svensson-Coelho M, Marini MA, Ricklefs RE. Structure and organization of an avian haemosporidian assemblage in a Neotropical savanna in Brazil. Parasitology. 2013; 140:181-92.
  • [37]Svensson-Coelho M, Blake JG, Loiselle BA, Penrose AS, Parker PG, Ricklefs RE. Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a Western Amazon assemblage. Ornithol Monogr. 2013; 76:1-47.
  • [38]Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM et al.. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000; 38:4066-71.
  • [39]Wang L, Liu Y, Zhang S, Wang Y, Zhao J, Miao F et al.. A SYBR-green I quantitative real-time reverse transcription-PCR assay for rabies viruses with different virulence. Virol Sin. 2014; 29:131-2.
  • [40]Yuan W, Zheng Y, Sun M, Zhang X, Qi Y, Sun J. Development of a TaqMan-based real-time reverse transcription polymerase chain reaction assay for the detection of encephalomyocarditis virus. J Virol Methods. 2014; 201:60-5.
  • [41]Ferdin J, Cerar T, Strle F, Ruzić-Sabljić E. Evaluation of real-time PCR targeting hbb gene for Borrelia species identification. J Microbiol Methods. 2010; 82:115-9.
  • [42]Birdsell DN, Vogler AJ, Buchagen J, Clare A, Kaufman E, Naumann A, et al. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One. 2014; doi:10.1371/journal.pone.0107964.
  • [43]Greiman SE, Tkach VV, Pulis E, Fayton TJ, Curran SS. Large scale screening of digeneans for Neorickettsia endosymbionts using real-time PCR reveals new Neorickesttsia genotypes, host associations and geographic records. PLoS One. 2014; doi:10.1371/journal.pone.0098543.
  • [44]Teal AE, Habura A, Ennis J, Keithly JS, Madison-Antenucci S. A new real-time PCR assay for improved detection of the parasite Babesia microti. J Clin Microbiol. 2012; 50:903-8.
  • [45]Albers A, Sartono E, Wahyuni S, Yazdanbakhsh M, Maizels RM, Klarmann-Schulz U et al.. Real-time PCR identification of the Hhal tandem DNA repeat in pre – and post-patent Brugia malayi infections: a study in Indonesian transmigrants. Parasit Vectors. 2014; 7:146. BioMed Central Full Text
  • [46]Xu W, Morris U, Aydin-Schmidt B, Msellem MI, Shakely D, Petzold M, et al. SYBR green real-time PCR-RFLP assay targeting the Plasmodium cytochrome b gene – a highly sensitive molecular tool for malaria parasite detection and species determination. PLoS One. 2015; doi:10.1371/journal.pone.0120210.
  • [47]Bentz S, Rigaud T, Barroca M, Martin-Laurent F, Bru D, Moreau J et al.. Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology. 2006; 133:685-92.
  • [48]Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol. 2008; 119:99-110.
  • [49]Knowles SCL, Wood MJ, Alves R, Wilken TA, Bensch S, Sheldon BC. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol Ecol. 2011; 20:1062-76.
  • [50]van Rooyen J, Lalubin F, Glaizot O, Christe P. Avian haemosporidian persistence and co-infection in great tits at the individual level. Malar J. 2013; 12:40. BioMed Central Full Text
  • [51]Cellier-Holzem E, Esparza-Salas R, Garnier S, Sorci G. Effect of repeated exposure of Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. Int J Parasitol. 2010; 40:1447-53.
  • [52]Larcombe S, Bichet C, Cornet S, Faivre B, Sorci G. Food availability and competition do not modulate the costs of Plasmodium infection in dominant male canaries. Exp Parasitol. 2013; 135:708-14.
  • [53]Biedrzycka A, Migalska M, Bielański W. A quantitative PCR protocol for detecting specific Haemoproteus lineages: molecular characterization of blood parasites in a sedge warbler population from southern Poland. J Ornithol. 2014; 156:201-8.
  • [54]Friedl TWP, Groscurth E. A real-time PCR protocol for simple and fast quantification of blood parasite infections in evolutionary and ecological studies and some data on intensities of blood parasite infections in a subtropical weaverbird. J Ornithol. 2012; 153:239-47.
  • [55]Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999; 41:95-8.
  • [56]Fox J. The R commander: A basic statistics graphical user interface to R. J Stat Softw. 2005; 14:1-42.
  • [57]Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ et al.. Prevalence and diversity of avian hamatozoan parasites in Asia: a regional survey. J Wildl Dis. 2007; 43:382-98.
  • [58]Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes. 2007; 7:965-8.
  • [59]White E, Greiner EE, Bennet GF, Herman CM. Distribution of the hematozoa of Neotropical birds. Rev Biol Trop. 1978; 26:43-102.
  • [60]Forrester D, Greiner E. Leucocytozoonosis. In: Parasitic diseases of wild birds. Atkinson CT, Thomas NB, editors. Wiley-Blackwell, Ames, IA; 2008: p.55-107.
  • [61]Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV. Nested cytochrome b polymerase chain reaction diagnostics underestimate missed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol. 2006; 92:418-22.
  • [62]Freed LA, Cann RL. DNA quality and accuracy of avian malaria PCR diagnostics: a review. Condor. 2006; 108:459-73.
  • [63]Reeves AB, Smith MM, Meixell BW, Fleskes JP, Ramey AM. Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas flyway. PLoS One. 2015; doi:10.1371/journal.pone.0116661.
  • [64]Beadell JS, Fleischer RC. A restriction enzyme-based assay to distinguish between a avian haemosporidians. J Parasitol. 2005; 91:683-5.
  • [65]Fair JE, Jones J. Guidelines for the use of wild birds in research. In: BIRDNET, presented by the ornithological council. 2010. http://www.nmnh.si.edu/BIRDNET/guide. Accessed 30 May 2015.
  文献评价指标  
  下载次数:32次 浏览次数:12次