Retrovirology | |
DNA damage enhances integration of HIV-1 into macrophages by overcoming integrase inhibition | |
Yukihito Ishizaka2  Masashi Tatsumi4  Kenzo Tokunaga3  Binlian Sun1  Takayoshi Koyama2  | |
[1] Research Group of HIV Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institution of Virology, Chinese Academy of Sciences, 430071, Wuhan, Hubei, China;Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan;Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, 162-8640, Shinjuku-ku, Tokyo, Japan;AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, 162-8640, Shinjuku-ku, Tokyo, Japan | |
关键词: Vpr; Resting macrophages; Integration; Integrase inhibitor; HIV-1; DNA damage; | |
Others : 1209160 DOI : 10.1186/1742-4690-10-21 |
|
received in 2012-06-26, accepted in 2013-02-11, 发布年份 2013 | |
【 摘 要 】
Background
The prevention of persistent human immunodeficiency virus type 1 (HIV-1) infection requires the clarification of the mode of viral transduction into resting macrophages. Recently, DNA double-strand breaks (DSBs) were shown to enhance infection by D64A virus, which has a defective integrase catalytic activity (IN-CA). However, the mechanism by which DSBs upregulate viral transduction was unclear. Here we analyzed the roles of DSBs during IN-CA–independent viral transduction into macrophages.
Results
We used cellular systems with rare-cutting endonucleases and found that D64A virus integrated efficiently into the sites of artificially induced DSBs. This IN-CA-independent viral transduction was blocked by an inhibitor of ataxia telangiectasia mutated protein (ATM) but was resistant to raltegravir (RAL), an inhibitor of integrase activity during strand transfer. Moreover, Vpr, an accessory gene product of HIV-1, induced DSBs in resting macrophages and significantly enhanced the rate of IN-CA-independent viral transduction into macrophages with concomitant production of secondary viruses.
Conclusion
DSBs contribute to the IN-CA–independent viral infection of macrophages, which is resistant to RAL. Thus, the ATM-dependent cellular pathway and Vpr-induced DNA damage are novel targets for preventing persistent HIV-1 infection.
【 授权许可】
2013 Koyama et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150602085438609.pdf | 2517KB | download | |
Figure 7. | 212KB | Image | download |
Figure 6. | 138KB | Image | download |
Figure 5. | 76KB | Image | download |
Figure 4. | 90KB | Image | download |
Figure 3. | 52KB | Image | download |
Figure 2. | 121KB | Image | download |
Figure 1. | 121KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997, 387:188-191.
- [2]Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science 2009, 323:1304-1307.
- [3]Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 2000, 287:646-650.
- [4]Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C: Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2005, 49:4721-4732.
- [5]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-370.
- [6]Engelman A, Mizuuchi K, Craigie R: HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 1991, 67:1211-1221.
- [7]Engelman A, Craigie R: Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 1992, 66:6361-6369.
- [8]Brin E, Yi J, Skalka AM, Leis J: Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration. J Biol Chem 2000, 275:39287-39295.
- [9]Daniel R, Katz RA, Skalka AM: A role for DNA-PK in retroviral DNA integration. Science 1999, 284:644-647.
- [10]Smith JA, Wang FX, Zhang H, Wu KJ, Williams KJ, Daniel R: Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol J 2008, 5:11. BioMed Central Full Text
- [11]Kameoka M, Nukuzuma S, Itaya A, Tanaka Y, Ota K, Ikuta K, Yoshihara K: RNA interference directed against Poly(ADP-Ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J Virol 2004, 78:8931-8934.
- [12]Daniel R, Marusich E, Argyris E, Zhao RY, Skalka AM, Pomerantz RJ: Caffeine inhibits human immunodeficiency virus type 1 transduction of nondividing cells. J Virol 2005, 79:2058-2065.
- [13]Daniel R, Katz RA, Merkel G, Hittle JC, Yen TJ, Skalka AM: Wortmannin potentiates integrase-mediated killing of lymphocytes and reduces the efficiency of stable transduction by retroviruses. Mol Cell Biol 2001, 21:1164-1172.
- [14]Lau A, Swinbank KM, Ahmed PS, Taylor DL, Jackson SP, Smith GC, O’Connor MJ: Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat Cell Biol 2005, 7:493-500.
- [15]Sakurai Y, Komatsu K, Agematsu K, Matsuoka M: DNA double strand break repair enzymes function at multiple steps in retroviral infection. Retrovirology 2009, 6:114. BioMed Central Full Text
- [16]Siva AC, Bushman F: Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. J Virol 2002, 76:11904-11910.
- [17]Dehart JL, Andersen JL, Zimmerman ES, Ardon O, An DS, Blackett J, Kim B, Planelles V: The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J Virol 2005, 79:1389-1396.
- [18]Baekelandt V, Claeys A, Cherepanov P, De Clercq E, De Strooper B, Nuttin B, Debyser Z: DNA-Dependent protein kinase is not required for efficient lentivirus integration. J Virol 2000, 74:11278-11285.
- [19]Ariumi Y, Turelli P, Masutani M, Trono D: DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J Virol 2005, 79:2973-2978.
- [20]Bauer M, Goldstein M, Christmann M, Becker H, Heylmann D, Kaina B: Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 2011, 108:21105-21110.
- [21]Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K: Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982, 42:1530-1536.
- [22]Anglana M, Bacchetti S: Construction of a recombinant adenovirus for efficient delivery of the I-SceI yeast endonuclease to human cells and its application in the in vivo cleavage of chromosomes to expose new potential telomeres. Nucleic Acids Res 1999, 27:4276-4281.
- [23]Berkovich E, Monnat RJ Jr, Kastan MB: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007, 9:683-690.
- [24]Matsuo M, Kaji K, Utakoji T, Hosoda K: Ploidy of human embryonic fibroblasts during in vitro aging. J Gerontol 1982, 37:33-37.
- [25]Skalka AM, Katz RA: Retroviral DNA integration and the DNA damage response. Cell Death Differ 2005, 12(Suppl 1):971-978.
- [26]Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008, 26:808-816.
- [27]Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I, Braun S, Glimm H, von Kalle C: High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 2007, 4:1051-1057.
- [28]Mochizuki N, Otsuka N, Matsuo K, Shiino T, Kojima A, Kurata T, Sakai K, Yamamoto N, Isomura S, Dhole TN: An infectious DNA clone of HIV type 1 subtype C. AIDS Res Hum Retroviruses 1999, 15:1321-1324.
- [29]McColl DJ, Chen X: Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 2010, 85:101-118.
- [30]Mouscadet JF, Delelis O, Marcelin AG, Tchertanov L: Resistance to HIV-1 integrase inhibitors: a structural perspective. Drug Resist Updat 2010, 13:139-150.
- [31]Serrao E, Odde S, Ramkumar K, Neamati N: Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 2009, 6:25. BioMed Central Full Text
- [32]Shafer RW, Schapiro JM: HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev 2008, 10:67-84.
- [33]Baydoun HH, Bai XT, Shelton S, Nicot C: HTLV-I tax increases genetic instability by inducing DNA double strand breaks during DNA replication and switching repair to NHEJ. PLoS One 2012, 7:e42226.
- [34]Matsuoka M, Jeang KT: Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax. HBZ and therapy. Oncogene 2011, 30:1379-1389.
- [35]Malim MH, Emerman M: HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 2008, 3:388-398.
- [36]Nakai-Murakami C, Shimura M, Kinomoto M, Takizawa Y, Tokunaga K, Taguchi T, Hoshino S, Miyagawa K, Sata T, Kurumizaka H: HIV-1 Vpr induces ATM-dependent cellular signal with enhanced homologous recombination. Oncogene 2007, 26:477-486.
- [37]Tachiwana H, Shimura M, Nakai-Murakami C, Tokunaga K, Takizawa Y, Sata T, Kurumizaka H, Ishizaka Y: HIV-1 Vpr induces DNA double-strand breaks. Cancer Res 2006, 66:627-631.
- [38]Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V: Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 2003, 278:25879-25886.
- [39]Daniel R, Kao G, Taganov K, Greger JG, Favorova O, Merkel G, Yen TJ, Katz RA, Skalka AM: Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc Natl Acad Sci USA 2003, 100:4778-4783.
- [40]Belzile JP, Richard J, Rougeau N, Xiao Y, Cohen EA: HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. J Virol 2010, 84:3320-3330.
- [41]Nakai-Murakami C, Minemoto Y, Ishizaka Y: Vpr-induced DNA double-strand breaks: molecular mechanism and biological relevance. Curr HIV Res 2009, 7:109-113.
- [42]Taneichi D, Iijima K, Doi A, Koyama T, Minemoto Y, Tokunaga K, Shimura M, Kano S, Ishizaka Y: Identification of SNF2h, a chromatin-remodeling factor, as a novel binding protein of Vpr of human immunodeficiency virus type 1. J Neuroimmune Pharmacol 2011, 6:177-187.
- [43]Connor RI, Chen BK, Choe S, Landau NR: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995, 206:935-944.
- [44]Smith JA, Daniel R: Up-regulation of HIV-1 transduction in nondividing cells by double-strand DNA break-inducing agents. Biotechnol Lett 2011, 33:243-252.
- [45]Leavitt AD, Robles G, Alesandro N, Varmus HE: Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol 1996, 70:721-728.
- [46]Nakajima N, Lu R, Engelman A: Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: definition of permissive and nonpermissive T-cell lines. J Virol 2001, 75:7944-7955.
- [47]Gaur M, Leavitt AD: Mutations in the human immunodeficiency virus type 1 integrase D, D(35)E motif do not eliminate provirus formation. J Virol 1998, 72:4678-4685.
- [48]Ebina H, Kanemura Y, Suzuki Y, Urata K, Misawa N, Koyanagi Y: Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir. Virology 2012, 427:44-50.
- [49]Miller DG, Petek LM, Russell DW: Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 2004, 36:767-773.
- [50]Bill CA, Summers J: Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci USA 2004, 101:11135-11140.
- [51]Moore JK, Haber JE: Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 1996, 383:644-646.
- [52]Farkash EA, Kao GD, Horman SR, Prak ET: Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 2006, 34:1196-1204.
- [53]Masuda T, Planelles V, Krogstad P, Chen IS: Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol 1995, 69:6687-6696.
- [54]Wu Y, Marsh JW: Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 2001, 293:1503-1506.
- [55]Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R: Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 1995, 69:2729-2736.
- [56]Poon B, Chang MA, Chen IS: Vpr is required for efficient Nef expression from unintegrated human immunodeficiency virus type 1 DNA. J Virol 2007, 81:10515-10523.
- [57]Fouchier RA, Meyer BE, Simon JH, Fischer U, Malim MH: HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 1997, 16:4531-4539.
- [58]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
- [59]Tokunaga K, Greenberg ML, Morse MA, Cumming RI, Lyerly HK, Cullen BR: Molecular basis for cell tropism of CXCR4-dependent human immunodeficiency virus type 1 isolates. J Virol 2001, 75:6776-6785.
- [60]Mizoguchi I, Ooe Y, Hoshino S, Shimura M, Kasahara T, Kano S, Ohta T, Takaku F, Nakayama Y, Ishizaka Y: Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1. Biochem Biophys Res Commun 2005, 338:1499-1506.
- [61]Hoshino S, Konishi M, Mori M, Shimura M, Nishitani C, Kuroki Y, Koyanagi Y, Kano S, Itabe H, Ishizaka Y: HIV-1 Vpr induces TLR4/MyD88-mediated IL-6 production and reactivates viral production from latency. J Leukoc Biol 2010, 87:1133-1143.
- [62]Iwabu Y, Fujita H, Kinomoto M, Kaneko K, Ishizaka Y, Tanaka Y, Sata T, Tokunaga K: HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J Biol Chem 2009, 284:35060-35072.
- [63]Iwabu Y, Kinomoto M, Tatsumi M, Fujita H, Shimura M, Tanaka Y, Ishizaka Y, Nolan D, Mallal S, Sata T, Tokunaga K: Differential anti-APOBEC3G activity of HIV-1 Vif proteins derived from different subtypes. J Biol Chem 2010, 285:35350-35358.
- [64]Butler SL, Hansen MS, Bushman FD: A quantitative assay for HIV DNA integration in vivo. Nat Med 2001, 7:631-634.
- [65]Yamamoto N, Tanaka C, Wu Y, Chang MO, Inagaki Y, Saito Y, Naito T, Ogasawara H, Sekigawa I, Hayashida Y: Analysis of human immunodeficiency virus type 1 integration by using a specific, sensitive and quantitative assay based on real-time polymerase chain reaction. Virus Genes 2006, 32:105-113.
- [66]Schmidt M, Zickler P, Hoffmann G, Haas S, Wissler M, Muessig A, Tisdale JF, Kuramoto K, Andrews RG, Wu T: Polyclonal long-term repopulating stem cell clones in a primate model. Blood 2002, 100:2737-2743.