Retrovirology | |
A functional conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction | |
Heiner Schaal2  Carsten Münk1  Ananda Ayyappan Jaguva Vasudevan1  Steffen Erkelenz2  Frank Hillebrand2  Marek Widera3  | |
[1] Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, Düsseldorf 40225, Germany;Institute for Virology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany;Current address: Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Virchowstr. 179, Essen 45147, Germany | |
关键词: Locked nucleic acids (LNAs); G run, hnRNP F/H; Alternative pre-mRNA splicing; Viral protein R (Vpr); Viral infectivity factor (Vif); APOBEC3G; Cytidine deaminase; Host restriction; HIV-1 infection; | |
Others : 1159805 DOI : 10.1186/s12977-014-0072-1 |
|
received in 2014-04-30, accepted in 2014-08-08, 发布年份 2014 | |
![]() |
【 摘 要 】
Background
The HIV-1 accessory proteins, Viral Infectivity Factor (Vif) and the pleiotropic Viral Protein R (Vpr) are important for efficient virus replication. While in non-permissive cells an appropriate amount of Vif is critical to counteract APOBEC3G-mediated host restriction, the Vpr-induced G2 arrest sets the stage for highest transcriptional activity of the HIV-1 long terminal repeat.
Both vif and vpr mRNAs harbor their translational start codons within the intron bordering the non-coding leader exons 2 and 3, respectively. Intron retention relies on functional cross-exon interactions between splice sites A1 and D2 (for vif mRNA) and A2 and D3 (for vpr mRNA). More precisely, prior to the catalytic step of splicing, which would lead to inclusion of the non-coding leader exons, binding of U1 snRNP to the 5' splice site (5'ss) facilitates recognition of the 3'ss by U2 snRNP and also supports formation of vif and vpr mRNA.
Results
We identified a G run localized deep in the vpr AUG containing intron 3 (GI3-2), which was critical for balanced splicing of both vif and vpr non-coding leader exons. Inactivation of GI3-2 resulted in excessive exon 3 splicing as well as exon-definition mediated vpr mRNA formation. However, in an apparently mutually exclusive manner this was incompatible with recognition of upstream exon 2 and vif mRNA processing. As a consequence, inactivation of GI3-2 led to accumulation of Vpr protein with a concomitant reduction in Vif protein. We further demonstrate that preventing hnRNP binding to intron 3 by GI3-2 mutation diminished levels of vif mRNA. In APOBEC3G-expressing but not in APOBEC3G-deficient T cell lines, mutation of GI3-2 led to a considerable replication defect. Moreover, in HIV-1 isolates carrying an inactivating mutation in GI3-2, we identified an adjacent G-rich sequence (GI3-1), which was able to substitute for the inactivated GI3-2.
Conclusions
The functionally conserved intronic G run in HIV-1 intron 3 plays a major role in the apparently mutually exclusive exon selection of vif and vpr leader exons and hence in vif and vpr mRNA formation. The competition between these exons determines the ability to evade APOBEC3G-mediated antiviral effects due to optimal vif expression.
【 授权许可】
2014 Widera et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150410080016889.pdf | 1488KB | ![]() |
|
Figure 8. | 98KB | Image | ![]() |
Figure 7. | 50KB | Image | ![]() |
Figure 6. | 87KB | Image | ![]() |
Figure 5. | 105KB | Image | ![]() |
Figure 4. | 22KB | Image | ![]() |
Figure 3. | 33KB | Image | ![]() |
Figure 2. | 56KB | Image | ![]() |
Figure 1. | 107KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Münk C, Jensen BE, Zielonka J, Haussinger D, Kamp C: Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses 2012, 4:3132-3161.
- [2]Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418:646-650.
- [3]Vasudevan AA, Smits SH, Hoppner A, Häussinger D, König BW, Münk C: Structural features of antiviral DNA cytidine deaminases. Biol Chem 2013, 394:1357-1370.
- [4]Rahm N, Telenti A: The role of tripartite motif family members in mediating susceptibility to HIV-1 infection. Curr Opin HIV AIDS 2012, 7:180-186.
- [5]Keckesova Z, Ylinen LM, Towers GJ: The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 2004, 101:10780-10785.
- [6]Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W: TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 2008, 4:e16.
- [7]Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J: The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008, 3:245-252.
- [8]Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451:425-430.
- [9]Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474:658-661.
- [10]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474:654-657.
- [11]Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LC, Fernandez-Sesma A, Rutsch F, Simon V, Konig R, Flory E: SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 2011, 7:e1002425.
- [12]Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 2014, 20:936-941.
- [13]Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF: Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 2013, 288:8101-8110.
- [14]Jakobsen MR, Mogensen TH, Paludan SR: Caught in translation: innate restriction of HIV mRNA translation by a schlafen family protein. Cell Res 2013, 23:320-322.
- [15]Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M: Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012, 491:125-128.
- [16]Razzak M: Genetics: Schlafen 11 naturally blocks HIV. Nat Rev Urol 2012, 9:605.
- [17]Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS: Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 2005, 22:367-377.
- [18]Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 2002, 79:285-296.
- [19]Münk C, Willemsen A, Bravo IG: An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 2012, 12:71.
- [20]Harris RS, Hultquist JF, Evans DT: The restriction factors of human immunodeficiency virus. J Biol Chem 2012, 287:40875-40883.
- [21]Refsland EW, Hultquist JF, Harris RS: Endogenous origins of HIV-1 G-to-A hypermutation and restriction in the nonpermissive T cell line CEM2n. PLoS Pathog 2012, 8:e1002800.
- [22]Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, Brown WL, Harris RS: Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 2011, 85:11220-11234.
- [23]Miyagi E, Opi S, Takeuchi H, Khan M, Goila-Gaur R, Kao S, Strebel K: Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 2007, 81:13346-13353.
- [24]Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003, 424:99-103.
- [25]Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH: DNA deamination mediates innate immunity to retroviral infection. Cell 2003, 113:803-809.
- [26]Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003, 424:94-98.
- [27]Wissing S, Galloway NL, Greene WC: HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Asp Med 2010, 31:383-397.
- [28]Purcell DF, Martin MA: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 1993, 67:6365-6378.
- [29]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D'Orso I, Fernandes J, Fahey M, Mahon C, O'Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, et al.: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-370.
- [30]Krummheuer J, Johnson AT, Hauber I, Kammler S, Anderson JL, Hauber J, Purcell DF, Schaal H: A minimal uORF within the HIV-1 vpu leader allows efficient translation initiation at the downstream env AUG. Virology 2007, 363:261-271.
- [31]Anderson JL, Johnson AT, Howard JL, Purcell DF: Both linear and discontinuous ribosome scanning are used for translation initiation from bicistronic human immunodeficiency virus type 1 env mRNAs. J Virol 2007, 81:4664-4676.
- [32]Exline CM, Feng Z, Stoltzfus CM: Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression. J Virol 2008, 82:3921-3931.
- [33]Erkelenz S, Poschmann G, Theiss S, Stefanski A, Hillebrand F, Otte M, Stuhler K, Schaal H: Tra2-mediated recognition of HIV-1 5? splice site D3 as a key factor in the processing of vpr mRNA. J Virol 2013, 87:2721-2734.
- [34]Widera M, Erkelenz S, Hillebrand F, Krikoni A, Widera D, Kaisers W, Deenen R, Gombert M, Dellen R, Pfeiffer T, Kaltschmidt B, Münk C, Bosch V, Köhrer K, Schaal H: An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of vif mRNA. J Virol 2013, 87:2707-2720.
- [35]Asang C, Hauber I, Schaal H: Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Nucleic Acids Res 2008, 36:1450-1463.
- [36]Madsen JM, Stoltzfus CM: A suboptimal 5? splice site downstream of HIV-1 splice site A1 is required for unspliced viral mRNA accumulation and efficient virus replication. Retrovirology 2006, 3:10.
- [37]Mandal D, Feng Z, Stoltzfus CM: Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J Virol 2010, 84:12790-12800.
- [38]Stoltzfus CM: Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus replication. Adv Virus Res 2009, 74:1-40.
- [39]Mandal D, Feng Z, Stoltzfus CM: Gag-processing defect of human immunodeficiency virus type 1 integrase E246 and G247 mutants is caused by activation of an overlapping 5? splice site. J Virol 2008, 82:1600-1604.
- [40]Kammler S, Otte M, Hauber I, Kjems J, Hauber J, Schaal H: The strength of the HIV-1 3? splice sites affects Rev function. Retrovirology 2006, 3:89.
- [41]Domsic JK, Wang Y, Mayeda A, Krainer AR, Stoltzfus CM: Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003, 23:8762-8772.
- [42]Bilodeau PS, Domsic JK, Mayeda A, Krainer AR, Stoltzfus CM: RNA splicing at human immunodeficiency virus type 1 3? splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J Virol 2001, 75:8487-8497.
- [43]Madsen JM, Stoltzfus CM: An exonic splicing silencer downstream of the 3? splice site A2 is required for efficient human immunodeficiency virus type 1 replication. J Virol 2005, 79:10478-10486.
- [44]Tsuruno C, Ohe K, Kuramitsu M, Kohma T, Takahama Y, Hamaguchi Y, Hamaguchi I, Okuma K: HMGA1a is involved in specific splice site regulation of human immunodeficiency virus type 1. Biochem Biophys Res Commun 2011, 406:512-517.
- [45]Xiao X, Wang Z, Jang M, Nutiu R, Wang ET, Burge CB: Splice site strength-dependent activity and genetic buffering by poly-G runs. Nat Struct Mol Biol 2009, 16:1094-1100.
- [46]Yeo G, Hoon S, Venkatesh B, Burge CB: Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci U S A 2004, 101:15700-15705.
- [47]Zhang XH, Leslie CS, Chasin LA: Dichotomous splicing signals in exon flanks. Genome Res 2005, 15:768-779.
- [48]Schaub MC, Lopez SR, Caputi M: Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 2007, 282:13617-13626.
- [49]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002, 46:1896-1905.
- [50]Raposo RA, Abdel-Mohsen M, Bilska M, Montefiori DC, Nixon DF, Pillai SK: Effects of cellular activation on Anti-HIV-1 restriction factor expression profile in primary cells. J Virol 2013, 87:11924-11929.
- [51]Foley GE, Lazarus H, Farber S, Uzman BG, Boone BA, McCarthy RE: Continuous Culture of Human Lymphoblasts from Peripheral Blood of a Child with Acute Leukemia. Cancer 1965, 18:522-529.
- [52]Nara PL, Fischinger PJ: Quantitative infectivity assay for HIV-1 and-2. Nature 1988, 332:469-470.
- [53]Nara PL, Hatch WC, Dunlop NM, Robey WG, Arthur LO, Gonda MA, Fischinger PJ: Simple, rapid, quantitative, syncytium-forming microassay for the detection of human immunodeficiency virus neutralizing antibody. AIDS Res Hum Retrovir 1987, 3:283-302.
- [54]Tremblay M, Sullivan AK, Rooke R, Geleziunas R, Tsoukas C, Shematek G, Gilmore N, Wainberg MA: New CD4(+) cell line susceptible to infection by HIV-1. J Med Virol 1989, 28:243-249.
- [55]Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Münk C, Nymark-McMahon H, Landau NR: Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003, 114:21-31.
- [56]Goncalves J, Jallepalli P, Gabuzda DH: Subcellular localization of the Vif protein of human immunodeficiency virus type 1. J Virol 1994, 68:704-712.
- [57]Goncalves J, Shi B, Yang X, Gabuzda D: Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. J Virol 1995, 69:7196-7204.
- [58]Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D: Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 2004, 279:7792-7798.
- [59]Hoffman BE, Grabowski PJ: U1 snRNP targets an essential splicing factor, U2AF65, to the 3? splice site by a network of interactions spanning the exon. Genes Dev 1992, 6:2554-2568.
- [60]Robberson BL, Cote GJ, Berget SM: Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990, 10:84-94.
- [61]Kammler S, Leurs C, Freund M, Krummheuer J, Seidel K, Tange TO, Lund MK, Kjems J, Scheid A, Schaal H: The sequence complementarity between HIV-1 5? splice site SD4 and U1 snRNA determines the steady-state level of an unstable env pre-mRNA. RNA 2001, 7:421-434.
- [62]Erkelenz S, Mueller WF, Evans MS, Busch A, Schoneweis K, Hertel KJ, Schaal H: Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 2013, 19:96-102.
- [63]Jablonski JA, Caputi M: Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 2009, 83:981-992.
- [64]Lund N, Milev MP, Wong R, Sanmuganantham T, Woolaway K, Chabot B, Abou Elela S, Mouland AJ, Cochrane A: Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression. Nucleic Acids Res 2012, 40:3663-3675.
- [65]Kurreck J, Wyszko E, Gillen C, Erdmann VA: Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002, 30:1911-1918.
- [66]Elmen J, Zhang HY, Zuber B, Ljungberg K, Wahren B, Wahlestedt C, Liang Z: Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett 2004, 578:285-290.
- [67]Strebel K: HIV accessory proteins versus host restriction factors. Curr Opin Virol 2013, 3:692-699.
- [68]Pillai SK, Wong JK, Barbour JD: Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3). Retrovirology 2008, 5:26.
- [69]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
- [70]Selden RF, Howie KB, Rowe ME, Goodman HM, Moore DD: Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol 1986, 6:3173-3179.
- [71]Jaguva Vasudevan AA, Perkovic M, Bulliard Y, Cichutek K, Trono D, Häussinger D, Münk C: Prototype foamy virus bet impairs the dimerization and cytosolic solubility of human APOBEC3G. J Virol 2013, 87:9030-9040.
- [72]Widera M, Klein AN, Cinar Y, Funke SA, Willbold D, Schaal H: The D-amino acid peptide D3 reduces amyloid fibril boosted HIV-1 infectivity. AIDS Res Ther 2014, 11:1.
- [73]Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156-159.
- [74]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
- [75]Simon JH, Southerling TE, Peterson JC, Meyer BE, Malim MH: Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. J Virol 1995, 69:4166-4172.
- [76]Simm M, Shahabuddin M, Chao W, Allan JS, Volsky DJ: Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. J Virol 1995, 69:4582-4586.
- [77]McKeating JA, McKnight A, Moore JP: Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization. J Virol 1991, 65:852-860.
- [78]Moore JP, McKeating JA, Weiss RA, Sattentau QJ: Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 1990, 250:1139-1142.
- [79]Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L: A third-generation lentivirus vector with a conditional packaging system. J Virol 1998, 72:8463-8471.
- [80]Kootstra NA, Münk C, Tonnu N, Landau NR, Verma IM: Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells. Proc Natl Acad Sci USA 2003, 100:1298-1303.
- [81]Bembom O: seqLogo: Sequence Logos for DNA Sequence Alignments. Book seqLogo: Sequence Logos for DNA Sequence Alignments (Editor ed.^eds.) vol. R package version 1280, 1280 edition. 1990. pp. seqLogo takes the position weight matrix of a DNA sequence motif and plots the corresponding sequence logo as introduced by Schneider and Stephens. City; 2014:seqLogo takes the position weight matrix of a DNA sequence motif and plots the corresponding sequence logo as introduced by Schneider and Stephens (1990)