期刊论文详细信息
Virology Journal
Molecular detection of Torque teno virus in different breeds of swine
Yingshun Zhou1  Zhongbing Guan1  Xin Yang1  Hongning Wang1  Zhiwei Wu1 
[1] School of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province,"985"Project Science Innovative Platform for Resource and environment Protection of Southwestern, Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Chengdu, Sichuan, 610065, P.R. China
关键词: Torque teno virus (TTV);    swine breeds;    serums;    nested polymerase chain reaction (nested PCR);   
Others  :  1155683
DOI  :  10.1186/1743-422X-8-503
 received in 2011-08-29, accepted in 2011-11-03,  发布年份 2011
PDF
【 摘 要 】

Background

Torque teno virus (TTV), of the Anelloviridae family, Iotatorquevirus genus, is a non-enveloped, single-stranded, and negative sense DNA (ssDNA) virus infecting human and many domestic animals including swines. Very little information is known about the investigations of TTV prevalence in different swine breeds so far.

Methods

In this study, 208 serum samples collected from seven swine breeds (Rongchang pig, Chenghua pig, Zibet pig, Wild boar, Duroc, Landrace, Large Yorkshire) from two independent farms were detected to determine the prevalence of two swine TTV genogroups, TTV1 and TTV 2, by nested polymerase chain reaction methods, and to analyse prevalence difference among these breeds.

Results

The results showed that the prevalence of TTV in the seven breeds was 92%-100%. No significant difference (p > 0.05) in TTV infection was observed between different breeds. Interestingly, significantly higher prevalence for TTV1 in Rongchang boars (90%) and for TTV2 in Rongchang sows (95%) were detected, while co-infection rate (43.8%) was lower than other breeds. Sequence analysis showed that the homology of TTV1 and TTV2 were over 90.9% and 86.4% in these breeds, respectively.

Conclusions

The results indicated that TTV was widely distributed in the seven swine breeds. The prevalence of both TTV genogroups associated with swine breeds and genders. This study also respented the first description of swine TTV prevalence in different swine breeds. It was vitally necessary to further study swine TTV pathogenicity.

【 授权许可】

   
2011 Wu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407115601858.pdf 483KB PDF download
Figure 3. 26KB Image download
Figure 2. 24KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M: A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 1997, 241:92-97.
  • [2]Biagini P: Classification of TTV and related virus (anelloviruses). Curr Top Microbiol Immunol 2009, 331:21-23.
  • [3]Okamoto H, Takahashi M, Nishizawa T, Tawara A, Fukai K, Muramatsu U, Naito Y, Yoshikawa A: Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J Gen Virol 2002, 83:1291-1297.
  • [4]Gallei A, Pesch S, Esking WS, Keller C, Ohlinger VF: Porcine Torque teno virus: determination of viral genomic loads by genogroup-specific multiplex rt-PCR, detection of frequent multiple infections with genogroups 1 or 2, and establishment of viral full-length sequences. Vet Microbiol 2010, 143:202-212.
  • [5]Krakowka S, Ellis J: Evaluation of the effects of porcine genogroup 1 torque teno virus in gnotobiotic swine. Am J Vet Res 2008, 69:1623-1629.
  • [6]Biagini P, Charrel RN, de Micco P, de Lamballerie X: Association of TT virus primary infection with rhinitis in a newborn. Clin Infect Dis 2003, 36:128-129.
  • [7]Gergely P Jr, Blazsek A, Danko K, Ponyi A, Poor G: Detection of TT virus in patients with idiopathic inflammatory myopathies. Ann NY Acad Sci 2005, 1050:304-313.
  • [8]Kasirga E, Sanlidag T, Akcali S, Keskin S, Aktas E, Karakoc Z, Helvaci M, Sozen G, Kuzu M: Clinical significance of TT virus infection in children with chronic hepatitis B. Pediatr Int 2005, 47:300-304.
  • [9]Pifferi M, Maggi F, Andreoli E, Lanini L, Marco ED, Fornai C, Vatteroni ML, Pistello M, Ragazzo V, Macchia P, Boner A, Bendinelli M: Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J Infect Dis 2005, 192:1141-1148.
  • [10]Tomasiewicz K, Modrzewska R, Lyczak A, Krawczuk G: TT virus infection and pancreatic cancer: relationship or accidental coexistence. World J Gastroenterol 2005, 11:2847-2849.
  • [11]Ellis J, Allan G, Krakowka S: Effect of coinfection with genogroup1 porcine torque teno virus on porcine circovirus 2-associated postweaning multisystemic wasting syndrome in gnotobiotic swine. Am J Vet Res 2008, 69:1608-1614.
  • [12]Kekarainen T, Sibila M, Segales J: Prevalence of swine Torque teno virus in post-weaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs in Spain. J Gen Virol 2006, 87:833-837.
  • [13]Krakowka S, Hartunian C, Hamberg A, Shoup D, Rings M, Zhang Y, Allan G, Ellis J: Evaluation of induction of porcine dermatitis and nephropathy syndrome in gnotobiotic pigs with negative results for porcine circovirus type 2. Am J Vet Res 2008, 69:1615-1622.
  • [14]Savic B, Milicevic V, Kureljusic B, Ivetic V, Pavlovic I: Detection rates of the swine torque teno viruses (TTVs), porcine circovirus type 2 (PCV2) and hepatitis E virus (HEV) in the livers of pigs with hepatitis. Vet Res Commun 2010, 34:641-648.
  • [15]Taira O, Ogawa H, Nagao A, Tuchiya K, Nunoya T, Ueda S: Prevalence of swine Torque teno virus genogroups 1 and 2 in Japanese swine with suspected post-weaning multisystemic wasting syndrome and porcine respiratory disease complex. Vet Microbiol 2009, 139:347-350.
  • [16]Kekarainen T, Segalés J: Torque teno virus infection in the pig and its potential role as a model of human infection. Vet J 2009, 180:163-168.
  • [17]Okamoto H: TT viruses in animals. Curr Top Microbiol Immunol 2009, 331:35-52.
  • [18]Niel C, Diniz-Mendes L, Devalle S: Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 2005, 86:1343-1347.
  • [19]Segalés J, Martínez-Guinó L, Cortey M, Navarro N, Huerta E, Sibila M, Pujols J, Kekarainen T: Restrospecctive study on swine Torque teno virus genogroups 1 and 2 infection from 1985 to 2005 in Spain. Vet Microbiol 2009, 134:199-207.
  • [20]Bigarre L, Beven V, de Boisseson C, Grasland B, Rose N, Biagini P, Jestin A: Pig anelloviruses are highly prevalent in swine herds in France. J Gen Virol 2005, 86:631-635.
  • [21]Liu X, Gu W, Guo X, Ge X, Chen Y, Yang H: Prevalence of torque teno virus infection in pig herds in China. Vet Rec 2011, 168:410.
  • [22]Martelli F, Caprioli A, Di Bartolo I, Cibin V, Pezzotti G, Ruggeri FM, Ostanello F: Detection of Swine torque teno virus in italian pig herds. J Vet Med B Infect Dis Vet Public Health 2006, 53:234-238.
  • [23]McKeown NE, Fenaux M, Halbur PG, Meng XJ: Molecular characterization of porcine TT virus, an orphan virus, in pigs from six different countries. Vet Microbiol 2004, 104:113-117.
  • [24]Martínez L, Kekarainen T, Sibila M, Ruiz-Fons F, Vidal D, Gortazar C, Segalés J: Torque teno virus (TTV) is highly prevalent in the European wild boar (Sus scrofa). Vet Microbiol 2006, 118:223-229.
  • [25]Ng TFF, Suedmeyer WK, Wheeler E, Gulland F, Breitbart M: Novel anellovirus discovered from a mortality event of captive California sea lions. J Gen Virol 2009, 90:1256-1261.
  • [26]Huang YW, Ni YY, Dryman BA, Meng XJ: Multiple infection of porcine Torque teno virus in a single pig and characterization of the full-length genomic sequences of four U.S. prototype PTTV strains: implication for genotyping of PTTV. Virology 2010, 396:289-297.
  • [27]Hino S, Miyata H: Torque teno virus (TTV): current status. Rev Med Virol 2007, 17:45-57.
  • [28]Zhu CX, Cui L, Shan TL, Luo XN, Liu ZJ: Porcine torque teno virus infections in China. J Clin Virol 2010, 48:296-298.
  • [29]Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444:1022-1023.
  • [30]Komatsu H, Inui A, Sogo T, Kuroda K, Tanaka T, Fujisawa T: TTV infection in children born to mothers infected with TTV but not with HBV, HCV, or HIV. J Med Virol 2004, 74:499-506.
  • [31]Martínez-Guinó L, Sibila M, Kekarainen T, Martín-Valls G, Segalés J: Evidence of Torque teno virus (TTV) vertical transmission in swine. Theriogenolgy 2009, 71:1390-1395.
  • [32]Matsubara H, Michitaka K, Horiike N, Kihana T, Yano M, Mori T, Onji M: Existence of TT virus DNA and TTV-like mini virus DNA ininfant cord blood: mother-to-neonatal transmission. Hepatol Res 2001, 21:280-287.
  • [33]Brassard J, Gagne MJ, Lamoureux L, Inglis GD, Leblanc D, Houde A: Molecular detection of bovine and porcine Torque teno virus in plasma and faeces. Vet Microbiol 2008, 126:271-276.
  • [34]Kulcsar G, Farsang A, Soos T: Testing for viral contaminants of veterinary vaccines in Hungary. Biologicals 2010, 38:346-349.
  • [35]Aramouni M, Segalés J, Cortey M, Kekarainen T: Age-related tissue distribution of swine Torque teno sus virus 1 and 2. Vet Microbiol 2010, 146:350-353.
  • [36]Segalés J, Allan GM, Domingo M: Porcine circovirus diseases. Anim Health Res Rev 2005, 6:119-142.
  文献评价指标  
  下载次数:23次 浏览次数:24次