Particle and Fibre Toxicology | |
Synanthropic rodents and their ectoparasites as carriers of a novel haemoplasma and vector-borne, zoonotic pathogens indoors | |
Regina Hofmann-Lehmann5  Jenő Kontschán4  Ibolya Papp2  Róbert Farkas3  Attila Répási1  Enikő Gönczi5  Marina L Meli5  Krisztina Rigó3  Gábor Földvári3  Sándor Hornok3  | |
[1] County Veterinary Station, Borsod-Abaúj-Zemplén, Miskolc, Hungary;Veterinary Clinic, Mohács, Hungary;Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary;Plant Protection Institute, Centre of Agricultural Research of Hungarian Academy of Sciences, Budapest, Hungary;Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland | |
关键词: Haemoplasma; Bartonella; Borrelia; Anaplasma; Rickettsia; Rat; Mouse; | |
Others : 1147792 DOI : 10.1186/s13071-014-0630-3 |
|
received in 2014-05-08, accepted in 2014-12-30, 发布年份 2015 | |
【 摘 要 】
Background
Despite their close association with human dwellings, the role of synanthropic rodents in the epidemiology of vector-borne infections is seldom studied. The aim of the present study was to compensate for this lack of information, by the molecular investigation of vector-borne bacteria in peridomestic rodents and their ectoparasites.
Findings
Fifty-two rodents (mainly house mice and brown rats) were caught alive in buildings and checked for blood-sucking ectoparasites; followed by molecular analysis of these, together with spleen samples, for the presence of vector-borne agents. Haemoplasma infection was significantly more prevalent among brown rats, than among house mice. A novel haemoplasma genotype (with only 92-93% similarity to Candidatus Mycoplasma turicensis and M. coccoides in its 16S rRNA gene) was detected in a harvest mouse and a brown rat. Sporadic occurrence of Rickettsia helvetica, Anaplasma phagocytophilum, Borrelia burgdorferi s.l. and Bartonella sp. was also noted in rodents and/or their ectoparasites.
Conclusions
These results indicate that synanthropic rodents, although with low prevalence, may carry zoonotic and vector-borne pathogens indoors.
【 授权许可】
2015 Hornok et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150404043917347.pdf | 593KB | download | |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Fleer KA, Foley P, Calder L, Foley JE. Arthropod vectors and vector-borne bacterial pathogens in Yosemite National Park. J Med Entomol. 2011; 48:101-10.
- [2]Mihalca AD, Dumitrache MO, Sándor AD, Magdaş C, Oltean M, Györke A et al.. Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution. Parasit Vectors. 2012; 5:266. BioMed Central Full Text
- [3]Helhazar M, Leitão J, Duarte A, Tavares L, da Fonseca IP. Natural infection of synathropic rodent species Mus musculus and Rattus norvegicus by Leishmania infantum in Sesimbra and Sintra–Portugal. Parasit Vectors. 2013; 6:88. BioMed Central Full Text
- [4]Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004; 129 Suppl:S3-14.
- [5]Reeves WK, Dowling AP, Dasch GA. Rickettsial agents from parasitic dermanyssoidea (Acari: Mesostigmata). Exp Appl Acarol. 2006; 38:181-8.
- [6]Li Z-l, Xio B-l. Observations on the breeding and biological characteristics of Leptopsylla segnis. Endem Dis Bull. 1993; 8:26-8.
- [7]Robinson WH. Urban insects and Arachnids. Cambridge University Press, Cambridge, UK; 2005.
- [8]Durden LA, Polur RN, Nims T, Banks CW, Oliver JH. Ectoparasites and other epifaunistic arthropods of sympatric cotton mice and golden mice: comparisons and implications for vector-borne zoonotic diseases. J Parasitol. 2004; 90:1293-7.
- [9]Stevenson HL, Bai Y, Kosoy MY, Montenieri JA, Lowell JL, Chu MC et al.. Detection of novel Bartonella strains and Yersinia pestis in prairie dogs and their fleas (Siphonaptera: Ceratophyllidae and Pulicidae) using multiplex polymerase chain reaction. J Med Entomol. 2003; 40:329-37.
- [10]Masán P, Fenda P. A review of the laelapid mites associated with terrestrial mammals in Slovakia, with a key to the European species (Acari: Mesostigmata: Dermanyssoidea). Slovak Academy of Sciences, Bratislava, Slovakia; 2010.
- [11]Hornok S, Kováts D, Csörgő T, Meli ML, Gönczi E, Hadnagy Z et al.. Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors. 2014; 7:128. BioMed Central Full Text
- [12]Boretti FS, Perreten A, Meli ML, Cattori V, Willi B, Wengi N et al.. Molecular investigations of Rickettsia helvetica infection in dogs, foxes, humans and Ixodes spp. ticks. Appl Environ Microbiol. 2009; 75:3230-7.
- [13]Pusterla N, Huder JB, Leutenegger CM, Braun U, Madigan JE, Lutz H. Quantitative real-time PCR for detection of members of the Ehrlichia phagocytophila genogroup in host animals and Ixodes ricinus ticks. J Clin Microbiol. 1999; 37:1329-31.
- [14]Leutenegger CM, Pusterla N, Mislin CN, Weber R, Lutz H. Molecular evidence of coinfection of ticks with Borrelia burgdorferi sensu lato and the human granulocytic ehrlichiosis agent in Switzerland. J Clin Microbiol. 1999; 37:3390-1.
- [15]Molia S, Chomel BB, Kasten RW, Leutenegger CM, Steele BR, Marker L et al.. Prevalence of Bartonella infection in wild African lions (Panthera leo) and cheetahs (Acinonyx jubatus). Vet Microbiol. 2004; 100:31-41.
- [16]Hornok S, Földvári G, Elek V, Naranjo V, Farkas R, de la Fuente J. Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood- sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol. 2008; 154:354-9.
- [17]Willi B, Meli ML, Lüthy R, Honegger H, Wengi N, Hoelzle LE et al.. Development and application of a universal hemoplasma screening assay based on the SYBR green PCR principle. J Clin Microbiol. 2009; 47:4049-54.
- [18]Tasker S, Peters IR, Mumford AD, Day MJ, Gruffydd-Jones TJ, Day S et al.. Investigation of human haemotropic Mycoplasma infections using a novel generic haemoplasma qPCR assay on blood samples and blood smears. J Med Microbiol. 2010; 59(Pt 11):1285-92.
- [19]Hornok S, Meli ML, Perreten A, Farkas R, Willi B, Beugnet F et al.. Molecular investigation of hard ticks (Acari: Ixodidae) and fleas (Siphonaptera: Pulicidae) as potential vectors of rickettsial and mycoplasmal agents. Vet Microbiol. 2010; 140:98-104.
- [20]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28:2731-9.
- [21]Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol. 2000; 86:228-32.
- [22]Neimark H, Johansson KE, Rikihisa Y, Tully JG. Proposal to transfer some members of the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with descriptions of ‘Candidatus Mycoplasma haemofelis’, ‘Candidatus Mycoplasma haemomuris’, ‘Candidatus Mycoplasma haemosuis’ and ‘Candidatus Mycoplasma wenyonii’. Int J Syst Evol Microbiol. 2001; 51(Pt 3):891-9.
- [23]Neimark H, Peters W, Robinson BL, Stewart LB. Phylogenetic analysis and description of Eperythrozoon coccoides, proposal to transfer to the genus Mycoplasma as Mycoplasma coccoides comb. nov. and Request for an Opinion. Int J Syst Evol Microbiol. 2005; 55(Pt 3):1385-91.
- [24]Sashida H, Sasaoka F, Suzuki J, Watanabe Y, Fujihara M, Nagai K et al.. Detection of hemotropic mycoplasmas in free-living brown sewer rats (Rattus norvegicus). J Vet Med Sci. 2013; 75:979-83.
- [25]Steer JA, Tasker S, Barker EN, Jensen J, Mitchell J, Stocki T et al.. A novel hemotropic Mycoplasma (hemoplasma) in a patient with hemolytic anemia and pyrexia. Clin Infect Dis. 2011; 53:e147-51.
- [26]Sprong H, Wielinga PR, Fonville M, Reusken C, Brandenburg AH, Borgsteede F et al.. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors. 2009; 2:41. BioMed Central Full Text
- [27]Burgess EC, Wachal MD, Cleven TD. Borrelia burgdorferi infection in dairy cows, rodents, and birds from four Wisconsin dairy farms. Vet Microbiol. 1993; 35:61-77.
- [28]Masuzawa T, Hashimoto N, Kudeken M, Kadosaka T, Nakamura M, Kawabata H et al.. New genomospecies related to Borrelia valaisiana, isolated from mammals in Okinawa archipelago, Japan. J Med Microbiol. 2004; 53(Pt 5):421-6.
- [29]Netusil J, Zákovská A, Horváth R, Dendis M, Janouskovcová E. Presence of Borrelia burgdorferi sensu lato in mites parasitizing small rodents. Vector Borne Zoonotic Dis. 2005; 5:227-32.
- [30]Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR et al.. Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella, Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis. Am J Trop Med Hyg. 2006; 75:41-8.
- [31]Bown KJ, Bennet M, Begon M. Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerg Infect Dis. 2004; 10:684-7.
- [32]Telfer S, Clough HE, Birtles LR, Bennett M, Carslake D, Helyar S et al.. Ecological differences and coexistence in a guild of microparasites: bartonella in wild rodents. Ecology. 2007; 88:1841-9.
- [33]Harrus S, Bar-Gal GK, Golan A, Elazari-Volcani R, Kosoy MY, Morick D et al.. Isolation and genetic characterization of a Bartonella strain closely related to Bartonella tribocorum and Bartonella elizabethae in Israeli commensal rats. Am J Trop Med Hyg. 2009; 81:55-8.