期刊论文详细信息
Proteome Science
A critical assessment of SELDI-TOF-MS for biomarker discovery in serum and tissue of patients with an ovarian mass
Johannes MF G Aerts3  Marrije R Buist1  Gemma G Kenter1  Huub C J Hoefsloot2  Shreyas M de Jong3  Danielle Meijer1  Perry D Moerland4  Wouter Wegdam1 
[1] Department of Gynecology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands;Swammerdam Institute for Life Sciences, University of Amsterdam, 1098, XH, Amsterdam, the Netherlands;Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, AZ, 1105, the Netherlands;Netherlands Proteomics Centre, H.R. Kruytgebouw, Padualaan 8, CH, Utrecht, 3584, the Netherlands
关键词: Tissue;    Serum;    Biomarker;    Classification;    SELDI;    Ovarian cancer;    Microdissection;    Mass spectrometry;   
Others  :  817229
DOI  :  10.1186/1477-5956-10-45
 received in 2012-01-21, accepted in 2012-06-29,  发布年份 2012
PDF
【 摘 要 】

Background

Less than 25% of patients with a pelvic mass who are presented to a gynecologist will eventually be diagnosed with epithelial ovarian cancer. Since there is no reliable test to differentiate between different ovarian tumors, accurate classification could facilitate adequate referral to a gynecological oncologist, improving survival. The goal of our study was to assess the potential value of a SELDI-TOF-MS based classifier for discriminating between patients with a pelvic mass.

Methods

Our study design included a well-defined patient population, stringent protocols and an independent validation cohort. We compared serum samples of 53 ovarian cancer patients, 18 patients with tumors of low malignant potential, and 57 patients with a benign ovarian tumor on different ProteinChip arrays. In addition, from a subset of 84 patients, tumor tissues were collected and microdissection was used to isolate a pure and homogenous cell population.

Results

Diagonal Linear Discriminant Analysis (DLDA) and Support Vector Machine (SVM) classification on serum samples comparing cancer versus benign tumors, yielded models with a classification accuracy of 71-81% (cross-validation), and 73-81% on the independent validation set. Cancer and benign tissues could be classified with 95-99% accuracy using cross-validation. Tumors of low malignant potential showed protein expression patterns different from both benign and cancer tissues. Remarkably, none of the peaks differentially expressed in serum samples were found to be differentially expressed in the tissue lysates of those same groups.

Conclusion

Although SELDI-TOF-MS can produce reliable classification results in serum samples of ovarian cancer patients, it will not be applicable in routine patient care. On the other hand, protein profiling of microdissected tumor tissue may lead to a better understanding of oncogenesis and could still be a source of new serum biomarkers leading to novel methods for differentiating between different histological subtypes.

【 授权许可】

   
2012 Wegdam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710233346707.pdf 698KB PDF download
Figure 2. 76KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60:277-300.
  • [2]National Institutes of Health Consensus Development Conference Statement: Ovarian cancer: screening, treatment, and follow-up. Gynecol Oncol 1994, 55:S4-S14.
  • [3]Silverberg SG, Bell DA, Kurman RJ, Seidman JD, Prat J, Ronnett BM, et al.: Borderline ovarian tumors: key points and workshop summary. Hum Pathol 2004, 35:910-917.
  • [4]Vernooij F, Heintz AP, Coebergh JW, Massuger LF, Witteveen PO, van der Graaf Y: Specialized and high-volume care leads to better outcomes of ovarian cancer treatment in the Netherlands. Gynecol Oncol 2009, 112:455-461.
  • [5]Tingulstad S, Skjeldestad FE, Hagen B: The effect of centralization of primary surgery on survival in ovarian cancer patients. Obstet Gynecol 2003, 102:499-505.
  • [6]Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al.: Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol 2009, 10:327-340.
  • [7]Andersen ES, Knudsen A, Rix P, Johansen B: Risk of malignancy index in the preoperative evaluation of patients with adnexal masses. Gynecol Oncol 2003, 90:109-112.
  • [8]Sjovall K, Nilsson B, Einhorn N: The significance of serum CA 125 elevation in malignant and nonmalignant diseases. Gynecol Oncol 2002, 85:175-178.
  • [9]Jacobs IJ, Skates SJ, Macdonald N, Menon U, Rosenthal AN, Davies AP, et al.: Screening for ovarian cancer: a pilot randomised controlled trial. Lancet 1999, 353:1207-1210.
  • [10]Skates SJ, Horick N, Yu Y, Xu FJ, Berchuck A, Havrilesky LJ, et al.: Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15–3, CA 72–4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol 2004, 22:4059-4066.
  • [11]Palmer C, Duan X, Hawley S, Scholler N, Thorpe JD, Sahota RA, et al.: Systematic evaluation of candidate blood markers for detecting ovarian cancer. PLoS One 2008, 3:e2633.
  • [12]Moore RG, Jabre-Raughley M, Brown AK, Robison KM, Miller MC, Allard WJ, et al.: Comparison of a novel multiple marker assay vs the Risk of Malignancy Index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am J Obstet Gynecol 2010, 203:228-6.
  • [13]Ueland FR, Desimone CP, Seamon LG, Miller RA, Goodrich S, Podzielinski I, et al.: Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet Gynecol 2011, 117:1289-1297.
  • [14]Moore LE, Pfeiffer RM, Zhang Z, Lu KH, Fung ET, Bast RC Jr: Proteomic biomarkers in combination with CA 125 for detection of epithelial ovarian cancer using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Cancer 2012, 118:91-100.
  • [15]Zhang H, Kong B, Qu X, Jia L, Deng B, Yang Q: Biomarker discovery for ovarian cancer using SELDI-TOF-MS. Gynecol Oncol 2006, 102:61-66.
  • [16]Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002, 359:572-577.
  • [17]Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, et al.: Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004, 64:5882-5890.
  • [18]Diamandis EP: Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst 2010, 102:1462-1467.
  • [19]Ye B, Cramer DW, Skates SJ, Gygi SP, Pratomo V, Fu L, et al.: Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003, 9:2904-2911.
  • [20]Simpkins F, Czechowicz JA, Liotta L, Kohn EC: SELDI-TOF mass spectrometry for cancer biomarker discovery and serum proteomic diagnostics. Pharmacogenomics 2005, 6:647-653.
  • [21]Su F, Lang J, Kumar A, Ng C, Hsieh B, Suchard MA, et al.: Validation of candidate serum ovarian cancer biomarkers for early detection. Biomark Insights 2007, 2:369-375.
  • [22]Wegdam W, Moerland PD, Buist MR, van Ver Loren TE, Bleijlevens B, Hoefsloot HC, et al.: Classification-based comparison of pre-processing methods for interpretation of mass spectrometry generated clinical datasets. Proteome Sci 2009, 7:19. BioMed Central Full Text
  • [23]Diao L, Clarke CH, Coombes KR, Hamilton SR, Roth J, Mao L, et al.: Reproducibility of SELDI Spectra Across Time and Laboratories. Cancer Inform 2011, 10:45-64.
  • [24]Kozak KR, Su F, Whitelegge JP, Faull K, Reddy S, Farias-Eisner R: Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 2005, 5:4589-4596.
  • [25]Kong F, Nicole WC, Xiao X, Feng Y, Xu C, He D, et al.: Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer. Gynecol Oncol 2006, 100:247-253.
  • [26]Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD: Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 2008, 100:1432-1438.
  • [27]Cadron I, Van GT, Amant F, Vergote I, Moerman P, Waelkens E, et al.: The use of laser microdissection and SELDI-TOF MS in ovarian cancer tissue to identify protein profiles. Anticancer Res 2009, 29:1039-1045.
  • [28]De Bock M, de Seny D, Meuwis MA, Chapelle JP, Louis E, Malaise M, et al.: Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2010, 2010:906082.
  • [29]Vissers JP, Langridge JI, Aerts JM: Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 2007, 6:755-766.
  • [30]Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 2005, 21:1764-1775.
  • [31]Dudoit S, Fridlyand J: A Practical Approach to Microarray Data Analysis., chapter 7. New York: Springer; 2003.
  • [32]Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 2005, 365:488-492.
  • [33]Varma S, Simon R: Bias in error estimation when using cross-validation for model selection. BMC Bioinforma 2006, 7:91. BioMed Central Full Text
  • [34]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  文献评价指标  
  下载次数:40次 浏览次数:42次