期刊论文详细信息
Movement Ecology
The Lévy flight foraging hypothesis: forgetting about memory may lead to false verification of Brownian motion
Atle Mysterud1  Arild O Gautestad1 
[1] Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
关键词: Scale-free space use;    Statistical mechanics of movement;    Site fidelity;    Memory-influenced movement;    Lévy flight foraging hypothesis;    Optimal foraging;   
Others  :  802771
DOI  :  10.1186/2051-3933-1-9
 received in 2013-04-14, accepted in 2013-08-12,  发布年份 2013
PDF
【 摘 要 】

Background

The Lévy flight foraging hypothesis predicts a transition from scale-free Lévy walk (LW) to scale-specific Brownian motion (BM) as an animal moves from resource-poor towards resource-rich environment. However, the LW-BM continuum implies a premise of memory-less search, which contradicts the cognitive capacity of vertebrates.

Results

We describe methods to test if apparent support for LW-BM transitions may rather be a statistical artifact from movement under varying intensity of site fidelity. A higher frequency of returns to previously visited patches (stronger site fidelity) may erroneously be interpreted as a switch from LW towards BM. Simulations of scale-free, memory-enhanced space use illustrate how the ratio between return events and scale-free exploratory movement translates to varying strength of site fidelity. An expanded analysis of GPS data of 18 female red deer, Cervus elaphus, strengthens previous empirical support of memory-enhanced and scale-free space use in a northern forest ecosystem.

Conclusion

A statistical mechanical model architecture that describes foraging under environment-dependent variation of site fidelity may allow for higher realism of optimal search models and movement ecology in general, in particular for vertebrates with high cognitive capacity.

【 授权许可】

   
2013 Gautestad and Mysterud; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031100678.pdf 1684KB PDF download
Figure 5. 78KB Image download
Figure 4. 59KB Image download
Figure 3. 103KB Image download
Figure 2. 55KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schoener TW: Theory of feeding strategies. Ann Rev Ecol Syst 1971, 2:369-403.
  • [2]Viswanathan GM, Buldyrev SV, Havlin S, Luz MGE, Raposo EP, Stanley HE: Optimizing the success of random searches. Nature 1999, 401:911-914.
  • [3]Viswanathan GM: Fish in Lévy-flight foraging. Nature 2010, 465:1018-1019.
  • [4]Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE: The physics of foraging: An introduction to random searches and biological encounters. Cambridge: Cambridge University Press; 2011.
  • [5]Bartumeus F, da Luz MGE, Viswanathan GM, Catalan J: Animal search strategies: a quantitative random-walk analysis. Ecology 2005, 86:3078-3087.
  • [6]Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, et al.: Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 2010, 465:1066-1069.
  • [7]Humphries NE, Weimerskirch H, Queiroz N, Southhall EJ, Sims DW: Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci USA 2012, 109:7169-7174.
  • [8]Sims DW, Humphries NE, Bradford RW, Bruce BD: Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J Anim Ecol 2012, 81:432-442.
  • [9]Sims DW, Witt MJ, Richardson AJ, Southhall EJ, Metcalfe JD: Encounter success of free-ranging marine predator movements across a dynamic prey landscape. Proc R Soc B 2006, 273:1195-1201.
  • [10]Gautestad AO: Memory matters: influence from a cognitive map on animal space use. J Theor Biol 2011, 287:26-36.
  • [11]Gautestad AO: Lévy meets Poisson: a statistical artifact may lead to erroneous re-categorization of lévy walk as Brownian motion. Am Nat 2013, 181:440-450.
  • [12]Hays GC, Bastian T, Doyle TK, Fossette S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MKS, Pade NG, Sims DW: High activity and Lévy searches: jellyfish can search the water column like a fish. Proc R Soc B 2012, 279:465-473.
  • [13]Reynolds A: How many animals really do the lévy walk? comment. Ecology 2008, 89:2347-2351.
  • [14]Gautestad AO: Brownian motion or lévy walk? stepping towards an extended statistical mechanics for animal locomotion. J R Soc Interface 2012, 9:2332-2340.
  • [15]Gautestad AO: Animal space use: distinguishing a two-level superposition of scale-specific walks from scale-free lévy walk. Oikos 2013, 122:612-620.
  • [16]Börger L, Dalziel B, Fryxell J: Are there general mechanisms of animal home range behaviour? a review and prospects for future research. Ecol Lett 2008, 11:637-650.
  • [17]Ostfeld RS, Manson RH: Long-distance homing in meadow voles, Microtus pennsylvanicus. J Mammal 1996, 77:870-873.
  • [18]Burt de Perera T: Fish can encode order in their spatial map. Proc R Soc Lond B 2004, 271:2131-2134.
  • [19]Rodriguez F, Duran E, Vargas JP, Torres B, Salas C: Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 1994, 22:409-420.
  • [20]Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI: Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436:801-806.
  • [21]Moser EI, Moser M-B: Seeing into the future. Nature 2011, 469:303-304.
  • [22]Gautestad AO, Loe LE, Mysterud A: Inferring spatial memory and spatiotemporal scaling from GPS data: comparing red deer Cervus elaphus movements with simulation models. J Anim Ecol 2013, 82:572-586.
  • [23]Gautestad AO, Mysterud I: The home range fractal: from random walk to memory dependent space use. Ecol Complex 2010, 7:458-470.
  • [24]Van Moorter B, Visscher D, Benhamou S, Börger L, Boyce MS, Gaillard J-M: Memory keeps you at home: a mechanistic model for home range emergence. Oikos 2009, 118:641-652.
  • [25]Gautestad AO, Mysterud I: Spatial memory, habitat auto-facilitation and the emergence of fractal home range patterns. Ecol Model 2010, 221:2741-2750.
  • [26]Piper WH: Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 2011, 65:1329-1351.
  • [27]Gautestad AO, Mysterud I: Complex animal distribution and abundance from memory-dependent kinetics. Ecol Complex 2006, 3:44-55.
  • [28]Wolf M, Frair JL, Merrill E, Turchin P: The attraction of the known: the importance of spatial familiarity in habitat selection in wapiti Cervus elaphus. Ecography 2009, 32:401-410.
  • [29]Gautestad AO, Mysterud I: Intrinsic scaling complexity in animal dispersion and abundance. Am Nat 2005, 165:44-55.
  • [30]Sims DW, Righton D, Pitchford JW: Minimizing errors in identifying Lévy flight behaviour of organisms. J Anim Ecol 2007, 76:222-229.
  • [31]Benhamou S: How many animals really do the Lévy walk? Ecology 2007, 88:1962-1969.
  • [32]Reynolds AM, Rhodes CJ: The Lévy flight paradigm: random search patterns and mechanisms. Ecology 2009, 90:877-887.
  • [33]Shlesinger MF, Zaslavsky GM, Klafter J: Strange kinetics. Nature 1993, 363:31-37.
  • [34]Bartumeus F, Giuggioli L, Louzao M, Bretagnolle V, Oro D, Levin SA: Fishery discards impact on seabird movement patterns at regional scales. Curr Biol 2010, 20:215-222.
  • [35]Turchin P: Quantitative analysis of animal movement: measuring and modeling population redistribution in animals and plants. Sunderland, Massachusetts: Sinauer Associates; 1998.
  • [36]Senft RL, Coughenour MB, Bailey DW, Rittenhouse LR, Sala OE, Swift DM: Large herbivore foraging and ecological hierarchies. Bioscience 1987, 37:789-799.
  • [37]Gautestad AO, Mysterud I: Physical and biological mechanisms in animal movement processes. J Appl Ecol 1993, 30:523-535.
  • [38]Gautestad AO, Mysterud I: The home range ghost. Oikos 1995, 74:195-204.
  • [39]Gautestad AO, Mysterud I, Pelton MR: Complex movement and scale-free habitat use: testing the multi-scaled home range model on black bear telemetry data. Ursus 1998, 10:219-234.
  • [40]Giuggioli L, Bartumeus F: Linking animal movement to site fidelity. J Math Biol 2011. DOI 10.1007s00285-011-0431-7
  • [41]Edwards AM: Overturning conclusions of Levy flight movement patterns by fishing boats and foraging animals. Ecology 2011, 92:1247-1257.
  • [42]Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 2007, 449:1044-1049.
  • [43]Edwards AM: Using likelihood to test for Lévy flight search patterns and for general power-law distributions in nature. J Anim Ecol 2008, 77:1212-1222.
  • [44]Edwards AM, Freeman MP, Breed GA, Jonsen ID: Incorrect likelihood methods were used to infer scaling laws of marine predator search behaviour. PLoS ONE 2012, 7:e45174.
  • [45]Sims DW, Humphries NE: Lévy flight search patterns of marine predators not questioned: a reply to Edwards et al. ArXiv 2012, 1210:2288. [q-bio.PE]
  • [46]Swihart RK, Slade NA: Influence of sampling interval on estimates of home-range size. J Range Manage 1985, 49:1019-1025.
  文献评价指标  
  下载次数:45次 浏览次数:24次