期刊论文详细信息
Retrovirology
Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles
Dirk Lindemann2  Don C Lamb3  Erik Müllers2  Juliane Reh2  Volodymyr Kudryavtsev1  Aurélie Dupont1  Dorothee Schupp1  Kristin Stirnnagel2 
[1] Department of Chemistry, Center for NanoScience (CeNS) and Center for Integrated Protein Science, Munich (CIPSM), Ludwig-Maximilians-Universität, Munich, Germany;CRTD / DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Dresden, Germany;Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
关键词: Live-cell imaging;    Time-lapse microscopy;    Intracellular targeting;    Disassembly;    Entry;    Foamy virus;    Retrovirus;   
Others  :  1209271
DOI  :  10.1186/1742-4690-9-71
 received in 2012-05-20, accepted in 2012-08-13,  发布年份 2012
PDF
【 摘 要 】

Background

It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs.

Results

N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured.

Conclusions

The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.

【 授权许可】

   
2012 Stirnnagel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602092500267.pdf 3035KB PDF download
Figure 9. 82KB Image download
Figure 8. 78KB Image download
Figure 7. 95KB Image download
Figure 6. 75KB Image download
Figure 5. 125KB Image download
Figure 4. 102KB Image download
Figure 3. 94KB Image download
Figure 2. 86KB Image download
Figure 1. 180KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Smith AE, Helenius A: How viruses enter animal cells. Science 2004, 304:237-242.
  • [2]Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W: Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 2005, 170:317-325.
  • [3]Brandenburg B, Zhuang X: Virus trafficking - learning from single-virus tracking. Nat Rev Microbiol 2007, 5:197-208.
  • [4]Thorley JA, McKeating JA, Rappoport JZ: Mechanisms of viral entry: sneaking in the front door. Protoplasma 2010, 244:15-24.
  • [5]Kumari S, Mg S, Mayor S: Endocytosis unplugged: multiple ways to enter the cell. Cell Res 2010, 20:256-275.
  • [6]Mercer J, Schelhaas M, Helenius A: Virus entry by endocytosis. Annu Rev Biochem 2010, 79:803-833.
  • [7]Grove J, Marsh M: The cell biology of receptor-mediated virus entry. J Cell Biol 2011, 195:1071-1082.
  • [8]Taylor MP, Koyuncu OO, Enquist LW: Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 2011, 9:427-439.
  • [9]Dohner K, Nagel CH, Sodeik B: Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 2005, 13:320-327.
  • [10]McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ: Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002, 159:441-452.
  • [11]Linial ML: Foamy viruses are unconventional retroviruses. J Virol 1999, 73:1747-1755.
  • [12]Lindemann D, Goepfert PA: The foamy virus envelope glycoproteins. Curr Top Microbiol Immunol 2003, 277:111-129.
  • [13]Stirnnagel K, Luftenegger D, Stange A, Swiersy A, Mullers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, et al.: Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010, 7:45. BioMed Central Full Text
  • [14]Nasimuzzaman M, Persons DA: Cell membrane-associated heparan sulfate is a receptor for prototype foamy virus in human, monkey, and rodent cells. Mol Ther 2012, 20:1158-1166.
  • [15]Plochmann K, Horn A, Gschmack E, Armbruster N, Krieg J, Wiktorowicz T, Weber C, Stirnnagel K, Lindemann D, Rethwilm A, Scheller C: Heparan sulfate is an attachment factor for foamy virus entry. J Virol 2012, 86:10028-10035.
  • [16]Picard-Maureau M, Jarmy G, Berg A, Rethwilm A, Lindemann D: Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol 2003, 77:4722-4730.
  • [17]Dermott E, Samuels J: Electron microscopic observations on the mechanisms of entry of simian foamy virus in HEp-2 cells. J Gen Virol 1973, 19:135-139.
  • [18]Petit C, Giron ML, Tobaly-Tapiero J, Bittoun P, Real E, Jacob Y, Tordo N, De The H, Saib A: Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci 2003, 116:3433-3442.
  • [19]Saib A, Puvion-Dutilleul F, Schmid M, Peries J, de The H: Nuclear targeting of incoming human foamy virus Gag proteins involves a centriolar step. J Virol 1997, 71:1155-1161.
  • [20]Lehmann-Che J, Renault N, Giron ML, Roingeard P, Clave E, Tobaly-Tapiero J, Bittoun P, Toubert A, de The H, Saib A: Centrosomal latency of incoming foamy viruses in resting cells. PLoS Pathog 2007, 3:e74.
  • [21]Lehmann-Che J, Giron ML, Delelis O, Lochelt M, Bittoun P, Tobaly-Tapiero J, de The H, Saib A: Protease-dependent uncoating of a complex retrovirus. J Virol 2005, 79:9244-9253.
  • [22]Lindemann D, Pietschmann T, Picard-Maureau M, Berg A, Heinkelein M, Thurow J, Knaus P, Zentgraf H, Rethwilm A: A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 2001, 75:5762-5771.
  • [23]Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY: A monomeric red fluorescent protein. Proc Natl Acad Sci USA 2002, 99:7877-7882.
  • [24]Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY: The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000, 97:11990-11995.
  • [25]Verkhusha VV, Sorkin A: Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 2005, 12:279-285.
  • [26]Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y: Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 2008, 94:4103-4113.
  • [27]Muller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Krausslich HG: Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol 2004, 78:10803-10813.
  • [28]Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A: Foamy virus particle formation. J Virol 1998, 72:1610-1615.
  • [29]Stanke N, Stange A, Lüftenegger D, Zentgraf H, Lindemann D: Ubiquitination of the prototype foamy virus envelope glycoprotein leader peptide regulates subviral particle release. J Virol 2005, 79:15074-15083.
  • [30]Koch P, Lampe M, Godinez WJ, Muller B, Rohr K, Krausslich HG, Lehmann MJ: Visualizing fusion of pseudotyped HIV-1 particles in real time by live cell microscopy. Retrovirology 2009, 6:84. BioMed Central Full Text
  • [31]Sherer NM, Lehmann MJ, Jimenez-Soto LF, Ingmundson A, Horner SM, Cicchetti G, Allen PG, Pypaert M, Cunningham JM, Mothes W: Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 2003, 4:785-801.
  • [32]Lampe M, Briggs JA, Endress T, Glass B, Riegelsberger S, Krausslich HG, Lamb DC, Brauchle C, Muller B: Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 2007, 360:92-104.
  • [33]Campbell EM, Perez O, Melar M, Hope TJ: Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology 2007, 360:286-293.
  • [34]Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D: An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 2000, 74:4474-4482.
  • [35]Toole-Simms W, Sun IL, Morre DJ, Crane FL: Transplasma membrane electron and proton transport is inhibited by chloroquine. Biochem Int 1990, 21:761-769.
  • [36]Misinzo G, Delputte PL, Nauwynck HJ: Inhibition of endosome-lysosome system acidification enhances porcine circovirus 2 infection of porcine epithelial cells. J Virol 2008, 82:1128-1135.
  • [37]Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987, 262:5592-5595.
  • [38]Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T: Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 2006, 10:839-850.
  • [39]Chen Y, Wang S, Lu X, Zhang H, Fu Y, Luo Y: Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways. Blood 2011, 117:6392-6403.
  • [40]Mullers E, Stirnnagel K, Kaulfuss S, Lindemann D: Prototype Foamy Virus (PFV) Gag nuclear localization - A novel pathway among retroviruses. J Virol 2011, 85:9276-9285.
  • [41]Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de The H, Saib A: Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 2008, 9:1717-1727.
  • [42]Bayer N, Schober D, Prchla E, Murphy RF, Blaas D, Fuchs R: Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 1998, 72:9645-9655.
  • [43]Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S: Alternating-laser excitation of single molecules. Acc Chem Res 2005, 38:523-533.
  • [44]Ruthardt N, Lamb DC, Brauchle C: Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 2011, 19:1199-1211.
  • [45]DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP: Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 1987, 7:379-387.
  • [46]Rasheed S, Nelson-Rees WA, Toth EM, Arnstein P, Gardner MB: Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 1974, 33:1027-1033.
  • [47]Gey G, Coffmann W, Kubicek M: Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 1952, 12:264-265.
  • [48]Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, Lindemann D, Rethwilm A: Improved primate foamy virus vectors and packaging constructs. J Virol 2002, 76:3774-3783.
  • [49]Mullers E, Uhlig T, Stirnnagel K, Fiebig U, Zentgraf H, Lindemann D: Novel functions of prototype foamy virus gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis. J Virol 2011, 85:1452-1463.
  • [50]Heinkelein M, Rammling M, Juretzek T, Lindemann D, Rethwilm A: Retrotransposition and cell-to-cell transfer of foamy viruses. J Virol 2003, 77:11855-11858.
  • [51]Gerlich D, Beaudouin J, Gebhard M, Ellenberg J, Eils R: Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells. Nat Cell Biol 2001, 3:852-855.
  • [52]Lindemann D, Bock M, Schweizer M, Rethwilm A: Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J Virol 1997, 71:4815-4820.
  • [53]Lindemann D, Rethwilm A: Characterization of a human foamy virus 170-kilodalton Env-Bet fusion protein generated by alternative splicing. J Virol 1998, 72:4088-4094.
  • [54]Ho Y-P, Schnabel V, Swiersy A, Stirnnagel K, Lindemann D: A small-molecule-controlled system for efficient pseudotyping of Prototype Foamy Virus vectors. Molecular Therapy 2012. In press
  • [55]Stange A, Lüftenegger D, Reh J, Weissenhorn W, Lindemann D: Subviral particle release determinants of prototype foamy virus. J Virol 2008, 82:9858-9869.
  • [56]Duda A, Stange A, Luftenegger D, Stanke N, Westphal D, Pietschmann T, Eastman SW, Linial ML, Rethwilm A, Lindemann D: Prototype foamy virus envelope glycoprotein leader peptide processing is mediated by a furin-like cellular protease, but cleavage is not essential for viral infectivity. J Virol 2004, 78:13865-13870.
  • [57]Krausslich HG, Facke M, Heuser AM, Konvalinka J, Zentgraf H: The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 1995, 69:3407-3419.
  文献评价指标  
  下载次数:128次 浏览次数:21次