期刊论文详细信息
Molecular Neurodegeneration
Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease
François Féron3  Philippe Benech3  Santiago Rivera3  Michel Khrestchatisky3  Béatrice Loriod2  Isabelle Virard3  Kévin Baranger1  Véréna Landel3 
[1] APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France;INSERM, TAGC UMR 1090, 13288 Marseille, France;Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
关键词: Phagocytosis;    Microglia;    GTPase signaling;    Oxidative stress;    Interferon;    Inflammation;    Neuro-immune processes;    Neocortex;    Hippocampus;    Transcriptome;   
Others  :  1138749
DOI  :  10.1186/1750-1326-9-33
 received in 2014-06-23, accepted in 2014-08-27,  发布年份 2014
PDF
【 摘 要 】

Background

The 5XFAD early onset mouse model of Alzheimer’s disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9).

Results

Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways.

Conclusions

Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.

【 授权许可】

   
2014 Landel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150320091938873.pdf 2636KB PDF download
Figure 7. 61KB Image download
Figure 6. 73KB Image download
Figure 5. 123KB Image download
Figure 4. 86KB Image download
Figure 3. 145KB Image download
Figure 2. 113KB Image download
Figure 1. 132KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006, 26:10129-10140.
  • [2]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297:353-356.
  • [3]Hong S, Quintero-Monzon O, Ostaszewski BL, Podlisny DR, Cavanaugh WT, Yang T, Holtzman DM, Cirrito JR, Selkoe DJ: Dynamic analysis of amyloid beta-protein in behaving mice reveals opposing changes in ISF versus parenchymal Abeta during age-related plaque formation. J Neurosci 2011, 31:15861-15869.
  • [4]Masters CL, Selkoe DJ: Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Biol Med 2012, 2:a006262.
  • [5]Mucke L, Selkoe DJ: Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Biol Med 2012, 2:a006338.
  • [6]Rice HC, Young-Pearse TL, Selkoe DJ: Systematic evaluation of candidate ligands regulating ectodomain shedding of amyloid precursor protein. Biochemistry 2013, 52:3264-3277.
  • [7]Kimura R, Ohno M: Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis 2009, 33:229-235.
  • [8]Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS, Khrestchatisky M, Rivera S, Feron F, Vignes M: Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer's disease: dissociation between somatosensory cortex and hippocampus. PLoS One 2013, 8:e74667.
  • [9]Devi L, Alldred MJ, Ginsberg SD, Ohno M: Sex- and brain region-specific acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease. Mol Brain 2010, 3:34.
  • [10]Devi L, Ohno M: Phospho-eIF2alpha level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice. PLoS One 2010, 5:e12974.
  • [11]Joyashiki E, Matsuya Y, Tohda C: Sominone improves memory impairments and increases axonal density in Alzheimer's disease model mice, 5XFAD. Int J Neurosci 2011, 121:181-190.
  • [12]Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O: Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 2012, 33:196. e129-140
  • [13]Devi L, Ohno M: Mechanisms that lessen benefits of beta-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry 2013, 3:e284.
  • [14]Girard SD, Baranger K, Gauthier C, Jacquet M, Bernard A, Escoffier G, Marchetti E, Khrestchatisky M, Rivera S, Roman FS: Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse model of Alzheimer's disease. J Alzheimers Dis 2013, 33:781-796.
  • [15]Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman FS, Valjent E, Marin P, Bockaert J, Rivera S, Claeysen S: Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2013, 5:96.
  • [16]Hongpaisan J, Sun MK, Alkon DL: PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer's disease transgenic mice. J Neurosci 2011, 31:630-643.
  • [17]Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci 2009, 30:2271-2283.
  • [18]Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM: Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer's disease. Acta Neuropathol 2011, 122:285-292.
  • [19]Ohno M: Failures to reconsolidate memory in a mouse model of Alzheimer's disease. Neurobiol Learn Mem 2009, 92:455-459.
  • [20]Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A, Khrestchatisky M, Feron F, Rivera S, Roman FS, Marchetti E: Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease. Hippocampus 2014, 24:762-772.
  • [21]Crowe SE, Ellis-Davies GC: Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct 2014, 219:571-580.
  • [22]Buskila Y, Crowe SE, Ellis-Davies GC: Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 2013, 254:152-159.
  • [23]Eimer WA, Vassar R: Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener 2013, 8:2.
  • [24]Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J: Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet 2004, 13:1225-1240.
  • [25]Unger T, Korade Z, Lazarov O, Terrano D, Schor NF, Sisodia SS, Mirnics K: Transcriptome differences between the frontal cortex and hippocampus of wild-type and humanized presenilin-1 transgenic mice. Am J Geriatr Psychiatry 2005, 13:1041-1051.
  • [26]Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass KC, Schor NF, Sisodia SS: Presenilin-1-dependent transcriptome changes. J Neurosci 2005, 25:1571-1578.
  • [27]Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, Zang FC: Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behav Brain Res 2012, 235:1-6.
  • [28]Kim TK, Lee JE, Park SK, Lee KW, Seo JS, Im JY, Kim ST, Lee JY, Kim YH, Lee JK, Han PL: Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease. Exp Mol Med 2012, 44:492-502.
  • [29]Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL: Early and sustained altered expression of aging-related genes in young 3xTg-AD mice. Cell death Disease 2014, 5:e1054.
  • [30]Kim KH, Moon M, Yu SB, Mook-Jung I, Kim JI: RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. J Alzheimers Dis 2012, 29:793-808.
  • [31]Bouter Y, Kacprowski T, Weissmann R, Dietrich K, Borgers H, Brauss A, Sperling C, Wirths O, Albrecht M, Jensen LR, Kuss AW, Bayer TA: Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing. Front Aging Neurosci 2014, 6:75.
  • [32]Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, Michael GZ, Talafous J, Eisenberg M, Saunders AM, Roses AD, Goldaberg D: Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci U S A 1994, 91:8368-8372.
  • [33]Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci 2007, 27:7006-7010.
  • [34]Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H: Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci U S A 2010, 107:17362-17367.
  • [35]Stein TD, Johnson JA: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 2002, 22:7380-7388.
  • [36]Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI: Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390:45-51.
  • [37]Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M: Suppression of aging in mice by the hormone Klotho. Science 2005, 309:1829-1833.
  • [38]Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimuri T, Nabeshima Y: Alpha-Klotho as a regulator of calcium homeostasis. Science 2007, 316:1615-1618.
  • [39]Xu L, Sapolsky RM, Giffard RG: Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol 2001, 169:416-424.
  • [40]Zabel MK, Kirsch WM: From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev 2013, 12:749-756.
  • [41]Mosher KI, Wyss-Coray T: Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014, 88:594-604.
  • [42]Streit WJ, Xue QS: Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 2014, 29C:93-96.
  • [43]Devi L, Ohno M: Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer's disease model mice. Eur J Neurosci 2010, 31:110-118.
  • [44]Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiol Dis 2012, 45:417-424.
  • [45]Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M: Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 2010, 107:20518-20522.
  • [46]Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M: Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 2010, 68:360-368.
  • [47]Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG: Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009, 4:47.
  • [48]Kadhim HJ, Duchateau J, Sebire G: Cytokines and brain injury: invited review. J Intensive Care Med 2008, 23:236-249.
  • [49]Laird MD, Vender JR, Dhandapani KM: Opposing roles for reactive astrocytes following traumatic brain injury. Neuro-Signals 2008, 16:154-164.
  • [50]Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T: Modulation of immune response by head injury. Injury 2007, 38:1392-1400.
  • [51]Schmidt OI, Heyde CE, Ertel W, Stahel PF: Closed head injury–an inflammatory disease? Brain Res Brain Res Rev 2005, 48:388-399.
  • [52]Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A: A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma 2012, 29:2375-2392.
  • [53]Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol 2008, 181:7254-7262.
  • [54]Hillmann A, Hahn S, Schilling S, Hoffmann T, Demuth HU, Bulic B, Schneider-Axmann T, Bayer TA, Weggen S, Wirths O: No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 2012, 33:833. e839-850
  • [55]McGeer PL, Akiyama H, Itagaki S, McGeer EG: Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 1989, 107:341-346.
  • [56]Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ: Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation 2011, 8:4.
  • [57]Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, Blennow K, Hansson O, Zetterberg H: Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm 2012, 119:789-797.
  • [58]Bergamaschini L, Canziani S, Bottasso B, Cugno M, Braidotti P, Agostoni A: Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin Exp Immunol 1999, 115:526-533.
  • [59]Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V: Activation of complement and contact system in Alzheimer's disease. Mech Ageing Dev 2001, 122:1971-1983.
  • [60]Kulkarni AP, Kellaway LA, Lahiri DK, Kotwal GJ: Neuroprotection from complement-mediated inflammatory damage. Ann N Y Acad Sci 2004, 1035:147-164.
  • [61]Zanjani H, Finch CE, Kemper C, Atkinson J, McKeel D, Morris JC, Price JL: Complement activation in very early Alzheimer disease. Alzheimer Dis Assoc Disord 2005, 19:55-66.
  • [62]Crehan H, Hardy J, Pocock J: Microglia, Alzheimer's disease, and complement. Int J Alzheimers Dis 2012, 2012:983640.
  • [63]Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K: Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases. J Neuroimmunol 2002, 124:83-92.
  • [64]Town T, Tan J, Flavell RA, Mullan M: T-cells in Alzheimer's disease. Neruomol Med 2005, 7:255-264.
  • [65]Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S: The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2014, 269:1-8.
  • [66]Baglio F, Saresella M, Preti MG, Cabinio M, Griffanti L, Marventano I, Piancone F, Calabrese E, Nemni R, Clerici M: Neuroinflammation and brain functional disconnection in Alzheimer's disease. Front Aging Neurosci 2013, 5:81.
  • [67]Shen Y, Yang L, Li R: What does complement do in Alzheimer's disease? Old molecules with new insights. Transl Neurodegeneration 2013, 2:21.
  • [68]Veerhuis R: Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr Alzheimer Res 2011, 8:34-58.
  • [69]Eyles D, Almeras L, Benech P, Patatian A, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol 2007, 103:538-545.
  • [70]Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B, Chaffaux S, Guerin G, Mata X, Benech P, Canale M, Alibert O, Maltere P, Gidrol X: Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res 2009, 5:29.
  • [71]Terrier B, Joly F, Vazquez T, Benech P, Rosenzwajg M, Carpentier W, Garrido M, Ghillani-Dalbin P, Klatzmann D, Cacoub P, Saadoun D: Expansion of functionally anergic CD21-/low marginal zone-like B cell clones in hepatitis C virus infection-related autoimmunity. J Immunol 2011, 187:6550-6563.
  • [72]Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol X, Mata X, Vaiman A, Guerin G: Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet 2012, 43:271-281.
  • [73]Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E: Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genet 2012, 5:29.
  • [74]Almeras L, Eyles D, Benech P, Laffite D, Villard C, Patatian A, Boucraut J, Mackay-Sim A, McGrath J, Feron F: Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 2007, 7:769-780.
  • [75]Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A: Production of interferon-gamma by microglia. Mult Scler 2006, 12:558-564.
  • [76]Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE, Das P: IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol 2010, 184:5333-5343.
  • [77]Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP: Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer's disease model rats. PLoS One 2013, 8:e75786.
  • [78]Lynch MA: The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease. Immunology 2013, 141:292-301.
  • [79]Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I: Abeta(1)(−)(4)(2)-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci 2012, 32:8845-8854.
  • [80]Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA: IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J Immunol 2013, 190:2241-2251.
  • [81]O'Keefe GM, Nguyen VT, Benveniste EN: Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: Implications in neurological diseases. J Neurovirol 2002, 8:496-512.
  • [82]Tooyama I, Kimura H, Akiyama H, McGeer PL: Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer's disease. Brain Res 1990, 523:273-280.
  • [83]Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G: Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Mol Neurodegener 2008, 3:13.
  • [84]Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I: Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 2008, 283:2784-2792.
  • [85]Matsuda S, Matsuda Y, D'Adamio L: CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener 2009, 4:41.
  • [86]Bekpen C, Xavier RJ, Eichler EE: Human IRGM gene "to be or not to be". Semin Immunopathol 2010, 32:437-444.
  • [87]Taylor GA, Feng CG, Sher A: p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 2004, 4:100-109.
  • [88]He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, Xu H: Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy 2012, 8:1621-1627.
  • [89]Wang C, Wang C, Dong H, Wu XM, Wang C, Xia F, Li G, Jia X, He S, Jiang X, Li H, Xu H: Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood–brain barrier and blood-cerebrospinal fluid barrier. Mol Immunol 2013, 53:43-51.
  • [90]Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA: The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2008, 2:83-89.
  • [91]Zhao YO, Khaminets A, Hunn JP, Howard JC: Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog 2009, 5:e1000288.
  • [92]Xu H, Wu ZY, Fang F, Guo L, Chen D, Chen JX, Stern D, Taylor GA, Jiang H, Yan SS: Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells. FASEB J 2010, 24:1583-1592.
  • [93]Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN, Coers J, Starnbach MN, Hunn JP, Howard JC, Feng CG, Sher A, Taylor GA: Balance of Irgm protein activities determines IFN-gamma-induced host defense. J Leukoc Biol 2009, 85:877-885.
  • [94]Hunn JP, Howard JC: The mouse resistance protein Irgm1 (LRG-47): a regulator or an effector of pathogen defense? PLoS Pathog 2010, 6:e1001008.
  • [95]Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A: A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
  • [96]Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A: TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
  • [97]Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS: A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci 2012, 32:8633-8648.
  • [98]Li Y, Xu C, Schubert D: The up-regulation of endosomal-lysosomal components in amyloid beta-resistant cells. J Neurochem 1999, 73:1477-1482.
  • [99]Pasternak SH, Callahan JW, Mahuran DJ: The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis 2004, 6:53-65.
  • [100]Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R: The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013, 126:329-352.
  • [101]Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 2013, 288:1295-1306.
  • [102]Nixon RA, Cataldo AM, Mathews PM: The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res 2000, 25:1161-1172.
  • [103]Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ: Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 1997, 6:601-611.
  • [104]Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B: Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1. Immunity 1998, 8:157-166.
  • [105]Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan JR, Appella E, Ozato K: An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 1990, 87:3743-3747.
  • [106]Weisz A, Kirchhoff S, Levi BZ: IFN consensus sequence binding protein (ICSBP) is a conditional repressor of IFN inducible promoters. Int Immunol 1994, 6:1125-1131.
  • [107]Perez C, Wietzerbin J, Benech PD: Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-gamma) activation of the human high-affinity Fc gamma receptor gene: a novel IFN regulatory mechanism. Mol Cell Biol 1993, 13:2182-2192.
  • [108]Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K: IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Reports 2012, 1:334-340.
  • [109]Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008, 26:535-584.
  • [110]Wang H, Morse HC 3rd: IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol Res 2009, 43:109-117.
  • [111]Marquis JF, Kapoustina O, Langlais D, Ruddy R, Dufour CR, Kim BH, MacMicking JD, Giguere V, Gros P: Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet 2011, 7:e1002097.
  • [112]Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD, Stevenson MM, Gros P: Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLoS Pathog 2013, 9:e1003491.
  • [113]Ju XS, Ruau D, Jantti P, Sere K, Becker C, Wiercinska E, Bartz C, Erdmann B, Dooley S, Zenke M: Transforming growth factor beta1 up-regulates interferon regulatory factor 8 during dendritic cell development. Eur J Immunol 2007, 37:1174-1183.
  • [114]Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 1993, 151:2150-2158.
  • [115]Frei K, Lins H, Schwerdel C, Fontana A: Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol 1994, 152:2720-2728.
  • [116]Qin L, Crews FT: NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation 2012, 9:5.
  • [117]Qin L, Liu Y, Hong JS, Crews FT: NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013, 61:855-868.
  • [118]Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM: Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001, 21:4183-4187.
  • [119]Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A, Bacskai BJ: Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model. J Neurosci 2013, 33:17042-17051.
  • [120]Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M, Yun KN, Kim JY, Mook-Jung I, Park YM, Choi S: Quantitative proteomic analysis of the hippocampus in the 5XFAD mouse model at early stages of Alzheimer's disease pathology. J Alzheimers Dis 2013, 36:321-334.
  • [121]Errante PR, Frazao JB, Condino-Neto A: The use of interferon-gamma therapy in chronic granulomatous disease. Recent Patents Anti-infective drug Dis 2008, 3:225-230.
  • [122]Manea A, Tanase LI, Raicu M, Simionescu M: Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2010, 30:105-112.
  • [123]Marchi LF, Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Mantovani B: In vitro activation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. Int Immunopharmacol 2014, 18:228-235.
  • [124]Matute JD, Arias AA, Dinauer MC, Patino PJ: p40phox: the last NADPH oxidase subunit. Blood Cells Mol Dis 2005, 35:291-302.
  • [125]Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC: Fc gamma R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 2008, 112:3867-3877.
  • [126]Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN: Vav proteins in neutrophils are required for FcgammaR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol 2006, 177:6388-6397.
  • [127]Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S: Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 2000, 273:5-9.
  • [128]Abramov AY, Canevari L, Duchen MR: Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004, 24:565-575.
  • [129]Ponomarev ED, Shriver LP, Dittel BN: CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol 2006, 176:1402-1410.
  • [130]Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B: Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer's disease: morphometric study and review of the literature. Folia Neuropathol 2012, 50:74-84.
  • [131]Walker FR, Nilsson M, Jones K: Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013, 14:1262-1276.
  • [132]Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C: Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer's disease. J Neuroimmunol 1993, 48:71-79.
  • [133]Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G: The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem 1996, 271:83-88.
  • [134]Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G: Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides. J Biol Chem 1992, 267:20540-20542.
  • [135]Rogers J, Lue LF: Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem Int 2001, 39:333-340.
  • [136]Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiapelli F, Bernard G: Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J Alzheimers Dis 2005, 7:221-232. discussion 255–262
  • [137]Koenigsknecht J, Landreth G: Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 2004, 24:9838-9846.
  • [138]Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K: LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 2005, 128:1778-1789.
  • [139]Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T: Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 2013, 210:157-172.
  • [140]Neumann H, Daly MJ: Variant TREM2 as risk factor for Alzheimer's disease. N Engl J Med 2013, 368:182-184.
  • [141]Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Lupton MK, Ryten M, Brown K, Lowe J, Ridge PG, Hammer MB, Wakutani Y, Hazrati L, Proitsi P, Newhouse S, Lohmann E, Erginel-Unaltuna N, Medway C, Hanagasi H, Troakes C, Gurvit H, Bilgic B, Al-Sarraj S, Benitez B, Cooper B, Carrell D, et al.: TREM2 variants in Alzheimer's disease. N Engl J Med 2013, 368:117-127.
  • [142]Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K: Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 2013, 368:107-116.
  • [143]Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H: TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 2007, 4:e124.
  • [144]Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P: Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 2007, 37:1290-1301.
  • [145]Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T: TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 2008, 56:1438-1447.
  • [146]Hamerman JA, Tchao NK, Lowell CA, Lanier LL: Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 2005, 6:579-586.
  • [147]Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 2006, 177:2051-2055.
  • [148]Vardy ER, Rice PJ, Bowie PC, Holmes JD, Grant PJ, Hooper NM: Increased circulating insulin-like growth factor-1 in late-onset Alzheimer's disease. J Alzheimers Dis 2007, 12:285-290.
  • [149]Freude S, Schilbach K, Schubert M: The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer's disease: from model organisms to human disease. Curr Alzheimer Res 2009, 6:213-223.
  • [150]Pang Y, Zheng B, Campbell LR, Fan LW, Cai Z, Rhodes PG: IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res 2010, 67:579-584.
  • [151]Ryu BR, Ko HW, Jou I, Noh JS, Gwag BJ: Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. J Neurobiol 1999, 39:536-546.
  • [152]Davila D, Torres-Aleman I: Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 2008, 19:2014-2025.
  • [153]Madathil SK, Carlson SW, Brelsfoard JM, Ye P, D'Ercole AJ, Saatman KE: Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice. PLoS One 2013, 8:e67204.
  • [154]Repovic P, Benveniste EN: Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci 2002, 22:5334-5343.
  • [155]Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL: Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006, 20:2369-2371.
  • [156]Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S: Prostaglandin E(2) induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol 2012, 189:2563-2573.
  • [157]Park KW, Nozell SE, Benveniste EN: Protective role of STAT3 in NMDA and glutamate-induced neuronal death: negative regulatory effect of SOCS3. PLoS One 2012, 7:e50874.
  • [158]Sleegers K, Brouwers N, Van Broeckhoven C: Role of progranulin as a biomarker for Alzheimer's disease. Biomark Med 2010, 4:37-50.
  • [159]Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, Kulkarni V, Crispino J, Hering H, Hutton M: Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol 2011, 178:284-295.
  • [160]Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin Z, Feng JQ, Abramson SB, Yu XP, Liu CJ: The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 2011, 332:478-484.
  • [161]Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A: Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 2002, 111:867-878.
  • [162]Okura H, Yamashita S, Ohama T, Saga A, Yamamoto-Kakuta A, Hamada Y, Sougawa N, Ohyama R, Sawa Y, Matsuyama A: HDL/apolipoprotein A-I binds to macrophage-derived progranulin and suppresses its conversion into proinflammatory granulins. J Atheroscler Thromb 2010, 17:568-577.
  • [163]Bhattacharya S, Haertel C, Maelicke A, Montag D: Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease. PLoS One 2014, 9:e89454.
  • [164]ArrayExpress database [http://www.ebi.ac.uk/arrayexpress webcite]
  • [165]Ingenuity Systems [http://www.ingenuity.com webcite]
  • [166]Prediguard [http://www.laboratoire-genex.fr webcite]
  文献评价指标  
  下载次数:36次 浏览次数:12次