期刊论文详细信息
Retrovirology
HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells
Hendrik Huthoff1  Maia Kavanagh Williamson1  Andrea Hegedus1 
[1] Department of Infectious Diseases, King¿s College London, 2nd Floor Borough Wing, Guy¿s Hospital, Great Maze Pond, London SE1 9RT, UK
关键词: T lymphocytes;    Glucose;    Apoptosis;    Virion assembly;    Glycolysis;    Metabolism;    Human immunodeficiency virus;   
Others  :  1151991
DOI  :  10.1186/s12977-014-0098-4
 received in 2014-08-05, accepted in 2014-10-24,  发布年份 2014
PDF
【 摘 要 】

Background

HIV-1, like all viruses, is entirely dependent on the host cell for providing the metabolic resources for completion of the viral replication cycle and the production of virions. It is well established that HIV-1 replicates efficiently in activated CD4+ T cells, whereas resting CD4+ T cells are refractory to infection with HIV-1. A hallmark of T cell activation is the upregulation of glycolysis to meet the biosynthetic and bioenergetic needs of cell proliferation and the execution of effector functions by the secretion of cytokines. To date, it has remained unknown if HIV-1 requires the high glycolytic activity of activated T cells to support its replication.

Results

We report that in primary CD4+ T cells, the flux through the glycolytic pathway is increased upon infection with HIV-1. This increase in glycolytic activity does not occur in T cell lines when infected with HIV-1. By providing cells with galactose instead of glucose, the former being a poor substrate for glycolysis, we monitored the effect of preventing glycolysis in CD4+ T cells on virus replication cycle and cell fate. We observed that HIV-1 infected primary CD4+ T cells cultured in galactose have a survival advantage over those cultured in glucose and this coincides with reduced caspase 3 activation and apoptosis in cultures with galactose. T cell lines do not recapitulate this difference in cell death. Finally, we demonstrate that virion production is dependent on glycolysis as cultures containing galactose yield reduced amounts of HIV-1 virions compared with cultures containing glucose.

Conclusions

The replication of HIV-1 in primary CD4+ T cells causes an increase in glycolytic flux of the cell. Glycolysis is particularly required for virion production and additionally increases the sensitivity of the infected cell to virus-induced cell death.

【 授权许可】

   
2014 Hegedus et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406124257374.pdf 2073KB PDF download
Figure 7. 25KB Image download
Figure 6. 42KB Image download
Figure 5. 89KB Image download
Figure 4. 57KB Image download
Figure 3. 79KB Image download
Figure 2. 65KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Maynard ND, Gutschow MV, Birch EW, Covert MW: The virus as metabolic engineer. Biotechnol J 2010, 5:686-694.
  • [2]Yu Y, Clippinger AJ, Pierciey FJ Jr, Alwine JC: Viruses and metabolism: alterations of glucose and glutamine metabolism mediated by human cytomegalovirus. Adv Virus Res 2011, 80:49-67.
  • [3]Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U: Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 2010, 4:61. BioMed Central Full Text
  • [4]Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD: Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006, 2:132.
  • [5]Roe B, Kensicki E, Mohney R, Hall WW: Metabolomic profile of hepatitis C virus-infected hepatocytes. PLoS One 2011, 6:23641.
  • [6]Vastag L, Koyuncy E, Grady SL, Shenk TE, Rabinowitz JD: Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 2011, 7:1002124.
  • [7]Grady SL, Purdy JG, Rabinowitz JD, Shenk T: Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection. Proc Natl Acad Sci U S A 2013, 110:5006-5015.
  • [8]Landini MP: Early enhanced glucose uptake in human cytomegalovirus-infected cells. J Gen Virol 1984, 65:1229-1232.
  • [9]Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD: Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 2008, 26:1179-1186.
  • [10]Chambers JW, Maguire TG, Alwine JC: Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 2010, 84:1867-1873.
  • [11]Korin YD, Zack JA: Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 1999, 73:6526-6532.
  • [12]Plesa G, Dai J, Baytop C, Riley JL, June CH, O¿Doherty U: Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J Virol 2007, 81:13938-13942.
  • [13]Vatakis DN, Nixon CC, Zack JA: Quiescent T cells and HIV: an unresolved relationship. Immunol Res 2010, 48:110-121.
  • [14]Frauwirth KA, Thompson CB: Regulation of T lymphocyte metabolism. J Immunol 2004, 172:4661-4665.
  • [15]van der Windt GJ, Pearce EL: Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 2012, 249:27-42.
  • [16]Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O¿Sullivan D, Huang SC, van der Windt GL, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013, 153:1239-1251.
  • [17]Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M: SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 2012, 9:87. BioMed Central Full Text
  • [18]Hrecka K, Hao C, Gierszweska M, Swanson SK, Kesik-Brodacka M, Sristava S, Florens L, Washburn MP, Skowronski J: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474:658-661.
  • [19]Laguette N, Benkirane M: How SAMHD1 changes our view of viral restriction. Trends Immunol 2012, 33:26-33.
  • [20]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474:654-657.
  • [21]Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012, 13:223-228.
  • [22]Hollenbaugh JA, Munger J, Kim B: Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC-MS/MS analysis. Virology 2011, 415:153-159.
  • [23]Crabtree HG: Observations on the carbohydrate metabolism of tumours. Biochem J 1929, 23:536-545.
  • [24]Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB: The CD28 signaling pathway regulates glucose metabolism. Immunity 2002, 16:769-777.
  • [25]Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC: Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008, 180:4476-4486.
  • [26]Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, Anderson SM, Abel ED, Chen BJ, Hale LP, Rathmell JC: The glucose transporter Glut1 is selectively essential for CD4 T Cell activation and effector function. Cell Metab 2014, 20:61-72.
  • [27]Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C, Martinez M, Cosset FL, Battini JL, Herzenberg LA, Atkuri KR, Sitbon M, Kinet S, Verhoeyen E, Taylor N: Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci U S A 2012, 109:2549-2554.
  • [28]Foley GE, Lazarus H, Farber S, Uzman BG, Boone BA, McCarthy RE: Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 1965, 18:522-529.
  • [29]Schneider U, Schwenk HU, Bornkamm G: Characterization of EBV-genome negative ¿null¿ and ¿T¿ cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 1977, 19:621-626.
  • [30]Finley LW, Zhang J, Ye J, Ward PS, Thompson CB: SnapShot: cancer metabolism pathways. Cell Metab 2013, 17:466.
  • [31]Bustamante E, Pedersen PL: High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 1977, 74:3735-3739.
  • [32]Frey PA: The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 1996, 10:461-470.
  • [33]Anand AR, Ganju RK: HIV-1 gp120-mediated apoptosis of T cells is regulated by the membrane tyrosine phosphatase CD45. J Biol Chem 2006, 281:12289-12299.
  • [34]Cummins NW, Badley AD: Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis 2010, 1:99.
  • [35]Garg H, Blumenthal R: HIV gp41-induced apoptosis is mediated by caspase-3-dependent mitochondrial depolarization, which is inhibited by HIV protease inhibitor nelfinavir. J Leukoc Biol 2006, 79:351-362.
  • [36]Gougeon ML: Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 2003, 3:392-404.
  • [37]Kim N, Kukkonen S, Gupta S, Aldovini A: Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog 2010, 6:1001103.
  • [38]Huang Y, Erdmann N, Peng H, Herek S, Davis JS, Luo X, Ikezu T, Zheng J: TRAIL-mediated apoptosis in HIV-1-infected macrophages is dependent on the inhibition of Akt-1 phosphorylation. J Immunol 2006, 177:2304-2313.
  • [39]Cicala C, Arthos J, Rubbert A, Selig S, Wildt K, Cohen OJ, Fauci AS: HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells. Proc Natl Acad Sci U S A 2000, 97:1178-1183.
  • [40]Bahbouhi B, Landay A, Al-Harthi L: Dynamics of cytokine expression in HIV productively infected primary CD4+ T cells. Blood 2004, 103:4581-4587.
  • [41]Altomare DA, Khaled AR: Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr Med Chem 2012, 19:3748-3762.
  • [42]Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E: PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 2014, 5:1-12.
  • [43]Torre D, Pugliese A, Speranza F: Role of nitric oxide in HIV-1 infection: friend or foe? Lancet Infect Dis 2002, 2:273-280.
  • [44]Deshmane SL, Mukerjee R, FAn S, Del Valle L, Michiels C, Sweet T, Rom I, Khalili K, Rappaport J, Amini S, Sawaya BE: Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 2009, 284:11364-11373.
  • [45]Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Droge W, Lehmann V: HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 1995, 14:546-554.
  • [46]Perl A, Banki K: Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid Redox Signal 2000, 2:551-573.
  • [47]Horimoto K, Nishimura Y, Oyama TM, Onoda K, Matsui H, Oyama TB, Kanemaru K, Masuda T, Oyama Y: Reciprocal effects of glucose on the process of cell death induced by calcium ionophore or H2O2 in rat lymphocytes. Toxicology 2006, 225:97-108.
  • [48]Le Goffe C, Vallette G, Charrier L, Candelon T, Bou-Hanna C, Bouhours JF, Laboisse CL: Metabolic control of resistance of human epithelial cells to H2O2 and NO stresses. Biochem J 2002, 364:349-359.
  • [49]Le Goffe C, Vallette G, Jarry A, Bou-Hanna C, Laboisse CL: The in vitro manipulation of carbohydrate metabolism: a new strategy for deciphering the cellular defence mechanisms against nitric oxide attack. Biochem J 1999, 344:643-648.
  • [50]Sorbara LR, Maldarelli F, Chamoun G, Schilling B, Chokekijcahi S, Staudt L, Mistuya H, Simpson IA, Zeichner SL: Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J Virol 1996, 70:7275-7279.
  • [51]Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, Henstridge DC, Maisa A, Hearps AC, Lewin SR, Landay A, Jaworoski A, McCune JM, Crowe SM: Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS 2014, 28:297-309.
  • [52]Ramiere C, Rodriguez J, Enache LS, Lotteau V, Andre P, Diaz O: Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J Virol 2014, 88:3246-3254.
  • [53]El-Bacha T, Menezes MM, Azevedo e Silva MC, Sola-Penna M, Da Poian AT: Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase. Mol Cell Biochem 2004, 266:191-198.
  • [54]Abrantes JL, Alves CM, Costa J, Almeida FC, Sola-Penna M, Fontes CF, Souza TM: Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochim Biophys Acta 1822, 2012:1198-1206.
  • [55]Wong N, Ojo D, Yan J, Tang D: PKM2 contributes to cancer metabolism.Cancer Lett, in press.
  • [56]Warburg O: On the origin of cancer cells. Science 1956, 123:309-314.
  • [57]Larbi A, Zelba H, Goldeck D, Pawelec G: Induction of HIF-1alpha and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. J Leukoc Biol 2010, 87:265-273.
  • [58]Stridh H, Fava E, Single B, Nicotera P, Orrenius S, Leist M: Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production. Chem Res Toxicol 1999, 12:874-882.
  • [59]Saligrama PT, Fortner KA, Secinaro MA, Collins CC, Russell JQ, Bud RC: IL-15 maintains T-cell survival via S-nitrosylation-mediated inhibition of caspase-3. Cell Death Differ 2014, 21:904-914.
  • [60]Wang B, Liu T, Lai CH, Rao Y, Choi MC, Chi JT, Dai J, Rathmell JC, Yao TP: Glycolysis-dependent Histone Deacetylase 4 degradation regulates inflammatory cytokine production.Mol Biol Cell, in press.
  • [61]Plymale DR, Tang DS, Comardelle AM, Fermin CD, Lewis DE, Garry RF: Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells. AIDS 1999, 13:1827-1839.
  • [62]Pan T, Wu S, He S, Luo H, Zhang Y, Fan M, Geng G, Ruiz VC, Zhang J, Mills L, Bai C, Zhang H: Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4+ T lymphocytes. PLoS One 2014, 9:93944.
  • [63]Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC: Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014, 505:509-514.
  • [64]Brugger B, Krautkrammer E, Tibroni N, Munte CE, Rauch S, Leibrecht I, Glass B, Breuer S, Geyer M, Krausslich HG, Kalbitzer HR, Wieland FT, Fackler OT: Human immunodeficiency virus type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology 2007, 4:70. BioMed Central Full Text
  • [65]van¿t Wout AB, Swain JV, Schindler M, Rao U, Pathmajeyan MS, Mullins JI, Krichhoff F: Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells. J Virol 2005, 79:10053-10058.
  • [66]Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O¿Brien WA, Ratner L, Kappes JC, Shaw GM, Hunter E: Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000, 74:8358-8367.
  • [67]Platt EJ, Wehrly K, Kuhmann SE, Chesebro B: Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 1998, 72:2855-2864.
  • [68]Fouchier RA, Meyer BE, Simon JH, Fisher U, Malim MH: HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 1997, 16:4531-4539.
  • [69]Schindler M, Munch J, Kirchhoff F: Human immunodeficiency virus type 1 inhibits DNA damage-triggered apoptosis by a Nef-independent mechanism. J Virol 2005, 79(9):5489-5498.
  • [70]Schindler M, Wurfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook M, Brenner M, Munch J, Kirchhoff F: Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol 2003, 77:10548-10556.
  • [71]Gelderblom HC, Vatakis DN, Burke SA, Lawrie SD, Bristol GC, Levy DN: Viral complementation allows HIV-1 replication without integration. Retrovirology 2008, 5:60. BioMed Central Full Text
  • [72]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
  • [73]Freed EO, Delwart EL, Buchschacher GL Jr, Panganiban AT: A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A 1992, 89:70-74.
  • [74]Freed EO, Martin MA: Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 1995, 69:1984-1989.
  文献评价指标  
  下载次数:31次 浏览次数:7次