期刊论文详细信息
Molecular Cytogenetics
Copy number changes and methylation patterns in an isodicentric and a ring chromosome of 15q11-q13: report of two cases and review of literature
Jiansheng Xie1  Peining Li2  Qinghua Zhou3  Fuwei Luo1  Zhiyong Xu1  Weiqing Wu2  Qin Wang1 
[1] Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong, China;Department of Genetics, Yale School of Medicine, New Haven, CT, USA;First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
关键词: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA);    Array comparative genomic hybridization (aCGH);    15q11-q13;    Ring chromosome;    Isodicentric chromosome;   
Others  :  1234921
DOI  :  10.1186/s13039-015-0198-4
 received in 2015-08-14, accepted in 2015-11-10,  发布年份 2015
PDF
【 摘 要 】

Background

The low copy repeats (LCRs) in chromosome 15q11-q13 have been recognized as breakpoints (BP) for not only intrachromosomal deletions and duplications but also small supernumerary marker chromosomes 15, sSMC(15)s, in the forms of isodicentric chromosome or small ring chromosome. Further characterization of copy number changes and methylation patterns in these sSMC(15)s could lead to better understanding of their phenotypic consequences.

Methods

Routine G-band karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay were performed on two Chinese patients with a sSMC(15).

Results

Patient 1 showed an isodicentric 15, idic(15)(q13), containing symmetrically two copies of a 7.7 Mb segment of the 15q11-q13 region by a BP3::BP3 fusion. Patient 2 showed a ring chromosome 15, r(15)(q13), with alternative one-copy and two-copy segments spanning a 12.3 Mb region. The defined methylation pattern indicated that the idic(15)(q13) and the r(15)(q13) were maternally derived.

Conclusions

Results from these two cases and other reported cases from literature indicated that combined karyotyping, aCGH and MS-MLPA analyses are effective to define the copy number changes and methylation patterns for sSMC(15)s in a clinical setting. The characterized genomic structure and epigenetic pattern of sSMC(15)s could lead to further gene expression profiling for better phenotype correlation.

【 授权许可】

   
2015 Wang et al.

【 预 览 】
附件列表
Files Size Format View
20151222084217882.pdf 1656KB PDF download
Fig. 3. 37KB Image download
Fig. 2. 83KB Image download
Fig. 1. 91KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Zody MC, Garber M, Sharpe T, Young SK, Rowen L, O'Neill K et al.. Analysis of the DNA sequence and duplication history of human chromosome 15. Nature. 2006; 440:671-675.
  • [2]Horsthemke B, Buiting K. Imprinting defects on human chromosome 15. Cytogenet Genome Res. 2006; 113:292-299.
  • [3]Liehr T, Claussen U, Starke H. Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet Genome Res. 2004; 107:55-67.
  • [4]Liehr T, Mrasek K, Weise A, Dufke A, Rodríguez L, Martínez Guardia N et al.. Small supernumerary marker chromosomes--progress towards a genotype-phenotype correlation. Cytogenet Genome Res. 2006; 112:23-34.
  • [5]Crolla JA, Harvey JF, Sitch FL, Dennis NR. Supernumerary marker 15 chromosomes: a clinical, molecular and FISH approach to diagnosis and prognosis. Hum Genet. 1995; 95:161-170.
  • [6]Huang B, Crolla JA, Christian SL, Wolf-Ledbetter ME, Macha ME, Papenhausen PN et al.. Refined molecular characterization of the breakpoints in small inv dup(15) chromosomes. Hum Genet. 1997; 99:11-17.
  • [7]Webb T, Hardy CA, King M, Watkiss E, Mitchell C, Cole T. A clinical, cytogenetic and molecular study of ten probands with supernumerary inv dup (15) marker chromosomes. Clin Genet. 1998; 53:34-43.
  • [8]Eggermann K, Mau UA, Bujdoso G, Koltai E, Engels H, Schubert R et al.. Supernumerary marker chromosomes derived from chromosome 15: analysis of 32 new cases. Clin Genet. 2002; 62:89-93.
  • [9]Roberts SE, Maggouta F, Thomas NS, Jacobs PA, Crolla JA. Molecular and fluorescence in situ hybridization characterization of the breakpoints in 46 large supernumerary marker 15 chromosomes reveals an unexpected level of complexity. Am J Hum Genet. 2003; 73:1061-1072.
  • [10]Maggouta F, Roberts SE, Dennis NR, Veltman MW, Crolla JA. A supernumerary marker chromosome 15 tetrasomic for the Prader-Willi/Angelman syndrome critical region in a patient with a severe phenotype. J Med Genet. 2003; 40:e84.
  • [11]Locke DP, Segraves R, Nicholls RD, Schwartz S, Pinkel D, Albertson DG et al.. BAC microarray analysis of 15q11–q13 rearrangements and the impact of segmental duplications. J Med Genet. 2004; 41:175-182.
  • [12]Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (Array CGH) with detection of gene dosage. Am J Hum Genet. 2004; 75:267-281.
  • [13]Dennis NR, Veltman MWM, Thompson R, Crain E, Bolton PF, Thomas NS. Clinical findings in 33 subjects with large supernumerary marker(15) chromosomes and 3 subjects with triplication of 15q11-q13. Am J Med Genet. 2006; 140:434-441.
  • [14]Tsuchiya KD, Opheim KE, Hannibal MC, Hing AV, Glass IA, Raff ML et al.. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization. Mol Cytogenet. 2008; 1:7. BioMed Central Full Text
  • [15]Wang NJ, Parokonny AS, Thatcher KN, Driscoll J, Malone BM, Dorrani N et al.. Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15. BMC Genet. 2008; 9:2. BioMed Central Full Text
  • [16]Kleefstra T, de Leeuw N, Wolf R, Nillesen WM, Schobers G, Mieloo H et al.. Phenotypic spectrum of 20 novel patients with molecularly defined supernumerary marker chromosomes 15 and a review of the literature. Am J Med Genet. 2010; 152A:2221-2229.
  • [17]Al Ageeli E, Drunat S, Delanoë C, Perrin L, Baumann C, Capri Y et al.. Duplication of the 15q11-q13 region: clinical and genetic study of 30 new cases. Eur J Med Genet. 2014; 57:5-14.
  • [18]Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ et al.. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005; 33:e128.
  • [19]Procter M, Chou LS, Tang W, Jama M, Mao R. Molecular diagnosis of Prader-Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification. Clin Chem. 2006; 52:1276-83.
  • [20]Bittel DC, Kibiryeva N, Butler MG. Methylation-specific multiplex ligation-dependent probe amplification analysis of subjects with chromosome 15 abnormalities. Genet Test. 2007; 11:467-475.
  • [21]Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R et al.. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009; 66:349-359.
  • [22]Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO et al.. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet. 2009; 46:86-93.
  • [23]Yang J, Yang Y, Huang Y, Hu Y, Chen X, Sun H et al.. A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC Med Genet. 2013; 14:9. BioMed Central Full Text
  • [24]Tan ES, Yong MH, Lim EC, Li ZH, Brett MS, Tan EC. Chromosome 15q11-q13 copy number gain detected by array-CGH in two cases with a maternal methylation pattern. Mol Cytogenet. 2014; 7:32. BioMed Central Full Text
  • [25]Aypar U, Brodersen PR, Lundquist PA, Dawson DB, Thorland EC, Hoppman N. Does parent of origin matter? Methylation studies should be performed on patients with multiple copies of the Prader-Willi/Angelman syndrome critical region. Am J Med Genet. 2014; 164A:2514-2520.
  • [26]Sodre CP, Guilherme RS, Meloni VF, Brunoni D, Juliano Y, Andrade JA et al.. Ring chromosome instability evaluation in six patients with autosomal rings. Genet Mol Res. 2010; 9:134-143.
  • [27]Zhang HZ, Xu F, Seashore M, Li P. Unique genomic structure and distinct mitotic behavior of ring chromosome 21 in two unrelated cases. Cytogenet Genome Res. 2012; 136:180-187.
  • [28]Burnside RD, Pasion R, Mikhail FM, Carroll AJ, Robin NH, Youngs EL et al.. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum Genet. 2011; 130:517-528.
  • [29]Goytain A, Hines RM, El-Husseini A, Quamme GA. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem. 2007; 282:8060-8068.
  • [30]Goytain A, Hines RM, Quamme GA. Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol. 2008; 295:944-953.
  • [31]Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S et al.. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008; 134:1042-1054.
  • [32]Chamberlain SJ, Lalande M. Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis. 2010; 39:13-20.
  • [33]Scoles HA, Urraca N, Chadwick SW, Reiter LT, Lasalle JM. Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples. Mol Autism. 2011; 2:19. BioMed Central Full Text
  • [34]Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP. Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med. 2011; 3:103ra97.
  • [35]Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P et al.. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997; 17:357-361.
  • [36]Haviland R, Eschrich S, Bloom G, Ma Y, Minton S, Jove R et al.. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer. PLoS One. 2011; 6:e24923.
  • [37]Gault J, Robinson M, Berger R, Drebing C, Logel J, Hopkins J et al.. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics. 1998; 52(2):173-185.
  • [38]Xu J, Pato MT, Torre CD, Medeiros H, Carvalho C, Basile VS et al.. Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet. 2001; 105:669-674.
  • [39]Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader Willi and Angelman syndromes. BMC Med Genet. 2010; 11:70. BioMed Central Full Text
  • [40]Hook EB. Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet. 1977; 29:94-97.
  • [41]Zhang HZ, Li P, Wang D, Huff S, Nimmakayalu M, Qumsiyeh M et al.. FOXC1 gene deletion is associated with eye anomalies in ring chromosome 6. Am J Med Genet A. 2004; 124a(3):280-287.
  • [42]Xu ZY, Geng Q, Luo FW, Xu F, Li P, Xie JS. Multiplex ligation-dependent probe amplification and array comparative genomic hybridization analyses for prenatal diagnosis of cytogenomic abnormalities. Mol Cytogenet. 2014; 7:84. BioMed Central Full Text
  文献评价指标  
  下载次数:11次 浏览次数:2次