| Retrovirology | |
| ESCRT requirements for EIAV budding | |
| Wesley I Sundquist1  Virginie Sandrin1  | |
| [1] Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84112-5650, Utah, USA | |
| 关键词: VPS4; CHMP2; CHMP4; ALIX; Gag; Virus budding; | |
| Others : 807137 DOI : 10.1186/1742-4690-10-104 |
|
| received in 2013-07-07, accepted in 2013-09-10, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Retroviruses and many other enveloped viruses usurp the cellular ESCRT pathway to bud from cells. However, the stepwise process of ESCRT-mediated virus budding can be challenging to analyze in retroviruses like HIV-1 that recruit multiple different ESCRT factors to initiate budding.
Results
In this study, we characterized the ESCRT factor requirements for budding of Equine Infectious Anemia Virus (EIAV), whose only known direct ESCRT protein interaction is with ALIX. siRNA depletion of endogenous ESCRT proteins and “rescue” experiments with exogenous siRNA-resistant wild type and mutant constructs revealed budding requirements for the following ESCRT proteins: ALIX, CHMP4B, CHMP2A and VPS4A or VPS4B. EIAV budding was inhibited by point mutations that abrogate the direct interactions between ALIX:CHMP4B, CHMP4B:CHMP2A, and CHMP2A:VPS4A/B, indicating that each of these interactions is required for EIAV budding. Unexpectedly, CHMP4B depletion led to formation of multi-lobed and long tubular EIAV virions.
Conclusions
We conclude that EIAV budding requires an ESCRT protein network that comprises EIAV Gag-ALIX-CHMP4B-CHMP2A-VPS4 interactions. Our experiments also suggest that CHMP4B recruitment/polymerization helps control Gag polymerization and/or processing to ensure that ESCRT factor assembly and membrane fission occur at the proper stage of virion assembly. These studies help establish EIAV as a streamlined model system for dissecting the stepwise processes of lentivirus assembly and ESCRT-mediated budding.
【 授权许可】
2013 Sandrin and Sundquist; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708103614904.pdf | 1755KB |
【 参考文献 】
- [1]Hurley JH, Hanson PI: Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 2010, 11:556-566.
- [2]Weissenhorn W, Poudevigne E, Effantin G, Bassereau P: How to get out: ssRNA enveloped viruses and membrane fission. Curr Opin Virol 2013, 3:159-167.
- [3]McCullough J, Colf LA, Sundquist WI: Membrane fission reactions of the mammalian ESCRT pathway. Annu Rev Biochem 2013, 82:663-692.
- [4]Hanson PI, Cashikar A: Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 2012, 28:1-26.
- [5]Morita E: Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. FEBS J 2012, 279:1399-1406.
- [6]Martin-Serrano J, Neil SJ: Host factors involved in retroviral budding and release. Nat Rev Microbiol 2011, 9:519-531.
- [7]Caballe A, Martin-Serrano J: ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 2011, 12:1318-1326.
- [8]Henne WM, Buchkovich NJ, Emr SD: The ESCRT pathway. Dev Cell 2011, 21:77-91.
- [9]Robinson JS, Klionsky DJ, Banta LM, Emr SD: Protein sorting in saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 1988, 8:4936-4948.
- [10]Banta LM, Robinson JS, Klionsky DJ, Emr SD: Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 1988, 107:1369-1383.
- [11]Rothman JH, Howald I, Stevens TH: Characterization of genes required for protein sorting and vacuolar function in the yeast saccharomyces cerevisiae. EMBO J 1989, 8:2057-2065.
- [12]Rothman JH, Stevens TH: Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 1986, 47:1041-1051.
- [13]Klionsky DJ, Emr SD: Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 1989, 8:2241-2250.
- [14]Odorizzi G, Babst M, Emr SD: Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 1998, 95:847-858.
- [15]Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN: TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci U S A 2003, 100:7626-7631.
- [16]Wollert T, Hurley JH: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010, 464:864-869.
- [17]Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, Cafiso DS, Eaton WA, Hummer G, Hurley JH: Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Structure 2012, 20:874-886.
- [18]Babst M, Katzmann D, Estepa-Sabal E, Meerloo T, Emr S: Escrt-III. An endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 2002, 3:271-282.
- [19]Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD: Functional reconstitution of ESCRT-III assembly and disassembly. Cell 2009, 136:97-109.
- [20]Teis D, Saksena S, Emr SD: Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 2008, 15:578-589.
- [21]Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH: Membrane scission by the ESCRT-III complex. Nature 2009, 458:172-177.
- [22]Lata S, Schoehn G, Jain A, Pires R, Piehler J, Gottlinger HG, Weissenhorn W: Helical structures of ESCRT-III are disassembled by VPS4. Science 2008, 321:1354-1357.
- [23]Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin M, et al.: A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 2009, 17:843-856.
- [24]Bajorek M, Schubert HL, McCullough J, Langelier C, Eckert DM, Stubblefield WM, Uter NT, Myszka DG, Hill CP, Sundquist WI: Structural basis for ESCRT-III protein autoinhibition. Nat Struct Mol Biol 2009, 16:754-762.
- [25]Fyfe I, Schuh AL, Edwardson JM, Audhya A: Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J Biol Chem 2011, 286:34262-34270.
- [26]Ghazi-Tabatabai S, Saksena S, Short JM, Pobbati AV, Veprintsev DB, Crowther RA, Emr SD, Egelman EH, Williams RL: Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 2008, 16:1345-1356.
- [27]Moriscot C, Gribaldo S, Jault JM, Krupovic M, Arnaud J, Jamin M, Schoehn G, Forterre P, Weissenhorn W, Renesto P: Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PloS One 2011, 6:e21921.
- [28]Hanson PI, Roth R, Lin Y, Heuser JE: Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 2008, 180:389-402.
- [29]Bodon G, Chassefeyre R, Pernet-Gallay K, Martinelli N, Effantin G, Hulsik DL, Belly A, Goldberg Y, Chatellard-Causse C, Blot B, et al.: Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem 2011, 286:40276-40286.
- [30]Effantin G, Dordor A, Sandrin V, Martinelli N, Sundquist WI, Schoehn G, Weissenhorn W: ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell Microbiol 2013, 15:213-226.
- [31]Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H, Muller-Reichert T, Gerlich DW: Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 2011, 331:1616-1620.
- [32]Scott A, Gaspar J, Stuchell-Brereton MD, Alam SL, Skalicky JJ, Sundquist WI: Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc Natl Acad Sci U S A 2005, 102:13813-13818.
- [33]Stuchell-Brereton MD, Skalicky JJ, Kieffer C, Karren MA, Ghaffarian S, Sundquist WI: ESCRT-III recognition by VPS4 ATPases. Nature 2007, 449:740-744.
- [34]Kieffer C, Skalicky JJ, Morita E, De Domenico I, Ward DM, Kaplan J, Sundquist WI: Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev Cell 2008, 15:62-73.
- [35]Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O, Emr SD, Williams RL: Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 2007, 449:735-739.
- [36]Hill CP, Babst M: Structure and function of the membrane deformation AAA ATPase Vps4. Biochim Biophys Acta 2012, 1823:172-181.
- [37]Babst M, Wendland B, Estepa EJ, Emr SD: The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 1998, 17:2982-2993.
- [38]Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M, Sundquist WI: Biochemical analyses of human IST1 and its function in cytokinesis. Mol Biol Cell 2009, 20:1360-1373.
- [39]von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, et al.: The protein network of HIV budding. Cell 2003, 114:701-713.
- [40]Martin-Serrano J, Yaravoy A, Perez-Caballero D, Bieniasz PD: Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 2003, 100:12414-12419.
- [41]Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M: Ist1 regulates vps4 localization and assembly. Mol Biol Cell 2008, 19:465-474.
- [42]Rue SM, Mattei S, Saksena S, Emr SD: Novel ist1-did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 2008, 19:475-484.
- [43]Skalicky JJ, Arii J, Wenzel DM, Stubblefield WM, Katsuyama A, Uter NT, Bajorek M, Myszka DG, Sundquist WI: Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport. J Biol Chem 2012, 287:43910-43926.
- [44]Yang Z, Vild C, Ju J, Zhang X, Liu J, Shen J, Zhao B, Lan W, Gong F, Liu M, et al.: Structural basis of molecular recognition between ESCRT-III-like protein Vps60 and AAA-ATPase regulator Vta1 in the multivesicular body pathway. J Biol Chem 2012, 287:43899-43908.
- [45]Shim S, Merrill SA, Hanson PI: Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly. Mol Biol Cell 2008, 19:2661-2672.
- [46]Azmi IF, Davies BA, Xiao J, Babst M, Xu Z, Katzmann DJ: ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev Cell 2008, 14:50-61.
- [47]Xiao J, Xia H, Zhou J, Azmi IF, Davies BA, Katzmann DJ, Xu Z: Structural basis of Vta1 function in the multivesicular body sorting pathway. Dev Cell 2008, 14:37-49.
- [48]Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI: Structural and mechanistic studies of VPS4 proteins. Embo J 2005, 24:3658-3669.
- [49]Luhtala N, Odorizzi G: Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J Cell Biol 2004, 166:717-729.
- [50]Sundquist WI, Krausslich HG: HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2012, 2:a006924.
- [51]Weiss ER, Gottlinger H: The role of cellular factors in promoting HIV budding. J Mol Biol 2011, 410:525-533.
- [52]Bieniasz PD: The cell biology of HIV-1 virion genesis. Cell Host Microbe 2009, 5:550-558.
- [53]Jouvenet N: Dynamics of ESCRT proteins. Cell Mol Life Sci 2012, 69:4121-4133.
- [54]Jouvenet N, Zhadina M, Bieniasz PD, Simon SM: Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 2011, 13:394-401.
- [55]Baumgartel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, Krausslich HG, Brauchle C, Muller B, Lamb DC: Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol 2011, 13:469-474.
- [56]Carlson LA, Hurley JH: In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U S A 2012, 109:16928-16933.
- [57]Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI: ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 2011, 9:235-242.
- [58]Zamborlini A, Usami Y, Radoshitzky SR, Popova E, Palu G, Gottlinger H: Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc Natl Acad Sci U S A 2006, 103:19140-19145.
- [59]Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, et al.: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001, 107:55-65.
- [60]VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA: Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc Natl Acad Sci U S A 2001, 98:7724-7729.
- [61]Demirov DG, Ono A, Orenstein JM, Freed EO: Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 2002, 99:955-960.
- [62]Strack B, Calistri A, Craig S, Popova E, Gottlinger HG: AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003, 114:689-699.
- [63]Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP: Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 2007, 128:841-852.
- [64]Usami Y, Popov S, Gottlinger HG: Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 2007, 81:6614-6622.
- [65]Ghoujal B, Milev MP, Ajamian L, Abel K, Mouland AJ: ESCRT-II’s involvement in HIV-1 genomic RNA trafficking and assembly. Eur J Cell Biol 2012, 104:706-721.
- [66]Zhadina M, Bieniasz PD: Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 2010, 6:e1001153.
- [67]Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI: Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 2006, 80:9465-9480.
- [68]Vincent O, Rainbow L, Tilburn J, Arst HN Jr, Penalva MA: YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/alix. Mol Cell Biol 2003, 23:1647-1655.
- [69]Puffer BA, Parent LJ, Wills JW, Montelaro RC: Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol 1997, 71:6541-6546.
- [70]Chen C, Vincent O, Jin J, Weisz OA, Montelaro RC: Functions of early (AP-2) and late (AIP1/ALIX) endocytic proteins in equine infectious anemia virus budding. J Biol Chem 2005, 280:40474-40480.
- [71]Zhai Q, Fisher RD, Chung HY, Myszka DG, Sundquist WI, Hill CP: Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat Struct Mol Biol 2008, 15:43-49.
- [72]Tanzi GO, Piefer AJ, Bates P: Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release. J Virol 2003, 77:8440-8447.
- [73]Bibollet-Ruche F, Bailes E, Gao F, Pourrut X, Barlow KL, Clewley JP, Mwenda JM, Langat DK, Chege GK, McClure HM, et al.: New simian immunodeficiency virus infecting De Brazza’s monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J Virol 2004, 78:7748-7762.
- [74]Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP: Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1. J Virol 2011, 85:632-637.
- [75]Olsen JC: Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 1998, 5:1481-1487.
- [76]Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T: A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 1994, 91:9564-9568.
- [77]Eekels JJ, Geerts D, Jeeninga RE, Berkhout B: Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res 2011, 89:43-53.
- [78]Samson RY, Obita T, Freund SM, Williams RL, Bell SD: A role for the ESCRT system in cell division in archaea. Science 2008, 322:1710-1713.
- [79]Bishop N, Woodman P: ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell 2000, 11:227-239.
- [80]Martin-Serrano J, Zang T, Bieniasz PD: Role of ESCRT-I in retroviral budding. J Virol 2003, 77:4794-4804.
- [81]Bissig C, Lenoir M, Velluz MC, Kufareva I, Abagyan R, Overduin M, Gruenberg J: Viral infection controlled by a calcium-dependent lipid-binding module in ALIX. Dev Cell 2013, 25:364-373.
- [82]Dussupt V, Javid MP, Abou-Jaoude G, Jadwin JA, de La Cruz J, Nagashima K, Bouamr F: The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 2009, 5:e1000339.
- [83]Dussupt V, Sette P, Bello NF, Javid MP, Nagashima K, Bouamr F: Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol 2011, 85:2304-2315.
- [84]Popov S, Popova E, Inoue M, Gottlinger HG: Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J Virol 2008, 82:1389-1398.
- [85]Dowlatshahi DP, Sandrin V, Vivona S, Shaler TA, Kaiser SE, Melandri F, Sundquist WI, Kopito RR: ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev Cell 2012, 23:1247-1254.
- [86]Keren-Kaplan T, Attali I, Estrin M, Kuo LS, Farkash E, Jerabek-Willemsen M, Blutraich N, Artzi S, Peri A, Freed EO, et al.: Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. EMBO J 2013, 32:538-551.
- [87]McCullough J, Fisher RD, Whitby FG, Sundquist WI, Hill CP: ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci U S A 2008, 105:7687-7691.
- [88]Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI: Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. Embo J 2007, 26:4215-4227.
- [89]Carlton JG, Martin-Serrano J: Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 2007, 316:1908-1912.
- [90]Lee HH, Elia N, Ghirlando R, Lippincott-Schwartz J, Hurley JH: Midbody targeting of the ESCRT machinery by a noncanonical coiled coil in CEP55. Science 2008, 322:576-580.
- [91]Hurley JH, Odorizzi G: Get on the exosome bus with ALIX. Nat Cell Biol 2012, 14:654-655.
- [92]Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al.: Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012, 14:677-685.
- [93]Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker C, Lanford RE, Lemon SM: A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 2013, 496:367-371.
- [94]Bardens A, Doring T, Stieler J, Prange R: Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner. Cell Microbiol 2011, 13:602-619.
- [95]Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC: The yeast alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev Cell 2013, 25:520-533.
- [96]Amerik AY, Nowak J, Swaminathan S, Hochstrasser M: The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell 2000, 11:3365-3380.
- [97]Leung KF, Dacks JB, Field MC: Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 2008, 9:1698-1716.
- [98]Carlton JG, Agromayor M, Martin-Serrano J: Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci U S A 2008, 105:10541-10546.
- [99]Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J: ESCRT-III governs the aurora B-mediated abscission checkpoint through CHMP4C. Science 2012, 336:220-225.
- [100]Shestakova A, Hanono A, Drosner S, Curtiss M, Davies BA, Katzmann DJ, Babst M: Assembly of the AAA ATPase Vps4 on ESCRT-III. Mol Biol Cell 2010, 21:1059-1071.
- [101]Yuan B, Campbell S, Bacharach E, Rein A, Goff SP: Infectivity of moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J Virol 2000, 74:7250-7260.
- [102]Lee SK, Nagashima K, Hu WS: Cooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication. J Virol 2005, 79:4159-4169.
- [103]Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, Johnson MC, Muller B, Grunewald K, Krausslich HG: Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 2008, 4:592-599.
- [104]Morita E, Colf LA, Karren MA, Sandrin V, Rodesch CK, Sundquist WI: Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci U S A 2010, 107:12889-12894.
- [105]Swingler S, Gallay P, Camaur D, Song J, Abo A, Trono D: The Nef protein of human immunodeficiency virus type 1 enhances serine phosphorylation of the viral matrix. J Virol 1997, 71:4372-4377.
PDF