期刊论文详细信息
Thrombosis Journal
Inhibition of thrombin generation in human plasma by phospholipid transfer protein
John H. Griffin1  John J. Albers2  José A. Fernández1  Darlene J. Elias1  Yajnavalka Banerjee3  Marian C. Cheung2  Gertrud Wolfbauer2  Hiroshi Deguchi1 
[1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, MEM180, 10550 North Torrey Pines Rd., La Jolla 92037, CA, USA;Division of Metabolism, Endocrinology, and Nutrition, Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, University of Washington, Seattle 98109, WA, USA;Current Address: Department of Biochemistry, College of Medicine and Health Sciences, SQ University, Muscat, Oman
关键词: Thrombin generation;    Venous thromboembolism;    Factor XII;    Phospholipid transfer protein;   
Others  :  1220451
DOI  :  10.1186/s12959-015-0054-0
 received in 2015-02-02, accepted in 2015-05-20,  发布年份 2015
PDF
【 摘 要 】

Background

Plasma phospholipid transfer protein (PLTP) transfers lipids between donors and acceptors (e.g., from HDL to VLDL) and modulates lipoprotein composition, size, and levels. No study has reported an assessment of the effects of PLTP on blood clotting reactions, such as reflected in thrombin generation assays, or on the association of venous thrombosis (VTE) risk with PLTP activity.

Methods

The in vitro effects of PLTP on blood coagulation reactions and the correlations between plasma PLTP activity levels and VTE were studied.

Results

Recombinant (r) PLTP concentration-dependently inhibited plasma thrombin generation and factor XII-dependent kallikrein generation when sulfatide was used to stimulate factor XII autoactivation in plasma. However, rPLTP did not inhibit thrombin generation in plasma induced by factor XIa or tissue factor, implicating an effect of PLTP on contact activation reactions. In purified systems, rPLTP inhibited factor XII autoactivation stimulated by sulfatide in the presence of VLDL. In surface plasmon resonance studies, purified factor XII bound to immobilized rPLTP, implying that rPLTP inhibits factor XII-dependent contact activation by binding factor XII in the presence of lipoproteins. Analysis of plasmas from 40 male patients with unprovoked VTE and 40 matched controls indicated that low PLTP lipid transfer activity (≤25th percentile) was associated with an increased risk of VTE after adjustment for body mass index, plasma lipids, and two known thrombophilic genetic risk factors.

Conclusion

These data imply that PLTP may be an antithrombotic plasma protein by inhibiting generation of prothrombotic factor XIIa in the presence of VLDL. This newly discovered anticoagulant activity of PLTP merits further clinical and biochemical studies.

【 授权许可】

   
2015 Deguchi et al.

【 预 览 】
附件列表
Files Size Format View
20150722081434674.pdf 879KB PDF download
Fig. 5. 18KB Image download
Fig. 4. 34KB Image download
Fig. 3. 32KB Image download
Fig. 2. 47KB Image download
Fig. 1. 48KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991; 30:10363-70.
  • [2]Mann KG. Thrombin formation. Chest. 2003; 124:4S-10S.
  • [3]Renné T, Pozgajová M, Grüner S, Schuh K, Pauer HU, Burfeind P et al.. Defective thrombus formation in mice lacking coagulation factor XII. J. Exp. Med. 2005; 202:271-81.
  • [4]Björkqvist J, Nickel KF, Stavrou E, Renné T. In vivo activation and functions of the protease factor XII. Thromb Haemost. 2014; 112:868-75.
  • [5]Schmaier AH, Larusch G. Factor XII: new life for an old protein. Thromb Haemost. 2010; 104:915-8.
  • [6]Schmaier AH. The elusive physiologic role of Factor XII. J. Clin. Invest. 2008; 118:3006-9.
  • [7]Cheng Q, Tucker EI, Pine MS, Sisler I, Matafonov A, Sun MF et al.. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood. 2010; 116:3981-9.
  • [8]Tans G, Griffin JH. Properties of sulfatides in factor-XII-dependent contact activation. Blood. 1982; 59:69-75.
  • [9]Tans G, Rosing J, Griffin JH. Sulfatide-dependent autoactivation of human blood coagulation Factor XII (Hageman Factor). J. Biol. Chem. 1983; 258:8215-22.
  • [10]Rosing J, Tans G, Griffin JH. Surface-dependent activation of human factor XII (Hageman factor) by kallikrein and its light chain. Eur. J. Biochem. 1985; 151:531-8.
  • [11]Shimada T, Sugo T, Kato H, Yoshida K, Iwanaga S. Activation of factor XII and prekallikrein with polysaccharide sulfates and sulfatides: comparison with kaolin-mediated activation. J. Biochem. 1985; 97:429-39.
  • [12]Tans G, Rosing J, Berrettini M, Lämmle B, Griffin JH. Autoactivation of human plasma prekallikrein. J. Biol. Chem. 1987; 262:11308-14.
  • [13]Tans G, Janssen-Claessen T, Rosing J, Griffin JH. Studies on the effect of serine protease inhibitors on activated contact factors. Application in amidolytic assays for factor XIIa, plasma kallikrein and factor XIa. Eur. J. Biochem. 1987; 164:637-42.
  • [14]Røjkjaer R, Schousboe I. The surface-dependent autoactivation mechanism of factor XII. Eur. J. Biochem. 1997; 243:160-6.
  • [15]Maas C, Govers-Riemslag JW, Bouma B, Schiks B, Hazenberg BP, Lokhorst HM et al.. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J. Clin. Invest. 2008; 118:3208-18.
  • [16]Griffin JH, Fernandez JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb. Haemost. 2001; 86:386-94.
  • [17]Mineo C, Deguchi H, Griffin JH. Shaul PW. Circ. Res. 2006; 98:1352-64.
  • [18]Deguchi H, Fernandez JA, Griffin JH. Plasma cholesteryl ester transfer protein and blood coagulability. Thromb. Haemost. 2007; 98:1160-4.
  • [19]Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta. 1821; 2012:345-57.
  • [20]Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P et al.. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000; 151:451-61.
  • [21]Oka T, Kujiraoka T, Ito M, Nagano M, Ishihara M, Iwasaki T et al.. Measurement of human plasma phospholipid transfer protein by sandwich ELISA. Clin Chem. 2000; 46:1357-64.
  • [22]Siggins S, Kärkkäinen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM et al.. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004; 45:387-95.
  • [23]Cheung MC, Wolfbauer G, Deguchi H, Fernández JA, Griffin JH, Albers JJ. Biochim. Biophys Acta. 2009; 1791:206-11.
  • [24]Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J. Lipid Res. 1985; 26:842-51.
  • [25]Tollefson JH, Ravnik S, Albers JJ. Isolation and characterization of a phospho-lipid transfer protein (LTP-II) from human plasma. J. Lipid Res. 1988; 29:1593-602.
  • [26]Cheung MC, Wolfbauer G, Albers JJ. Plasma phospholipid mass transfer rate relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters. Biochim. Biophys. Acta. 1996; 1303:103-10.
  • [27]Nishida HI, Nishida T. Phospholipid transfer protein mediates transfer of not only phosphotidylcholine but also cholesterol from phosphotidylcholine-cholesterol vesicles to high density lipoproteins. J. Biol. Chem. 1997; 272:6959-64.
  • [28]Tu A-Y, Nishida HI, Nishida T. High-density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J. Biol. Chem. 1993; 268:23098-105.
  • [29]Albers JJ, Wolfbauer G, Cheung MC, Day JR, Ching AF, Lok S et al.. Functional expression of human and mouse plasma phospholipid transfer protein: effect of recombinant and plasma PLTP on HDL subspecies. Biochim. Biophys. Acta. 1995; 1258:27-34.
  • [30]von Eckardstein A, Jauhiainen M, Huang Y, Metso J, Langer C, Pussinen P et al.. Phospholipid transfer protein mediated conversion of high density lipoproteins generates prebeta-HDL. Biochim. Biophys. Acta. 1996; 1301:255-62.
  • [31]Setälä NL, Holopainen JM, Metso J, Wiedmer SK, Yohannes G, Kinnunen PK et al.. Interfacial and lipid transfer properties of human phospholipid transfer protein: implications for the transfer mechanism of phospholipids. Biochemistry. 2007; 46:1312-9.
  • [32]Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ et al.. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010; 122:470-7.
  • [33]Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J et al.. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb. Vasc. Biol. 2003; 23:1857-62.
  • [34]Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M et al.. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J. Lipid Res. 2009; 50:723-9.
  • [35]Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I et al.. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008; 196:219-26.
  • [36]de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006; 49:398-404.
  • [37]Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP):review of an emerging cardiometabolic risk factor. Obes. Rev. 2009; 10:403-11.
  • [38]Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H et al.. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ. J. 2004; 68:11-6.
  • [39]Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008; 283:11541-9.
  • [40]Hron G, Kollars M, Binder BR, Eichinger S, Kyrle PA. Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA. 2006; 296:397-402.
  • [41]Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH. High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation. 2005; 112:893-9.
  • [42]Klein S, Spannagl M, Engelmann B. Phosphatidylethanolamine participates in the stimulation of the contact system of coagulation by very-low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 2001; 21:1695-700.
  • [43]Dashty M, Motazacker MM, Levels J, de Vries M, Mahmoudi M, Peppelenbosch MP et al.. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost. 2014; 111:518-30.
  • [44]Cochrane CG, Griffin JH. The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol. 1982; 33:241-306.
  • [45]Kaplan AP, Joseph K. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol. 2014; 121:41-89.
  • [46]Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813; 2011:1917-24.
  • [47]Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A et al.. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014; 28:2318-31.
  文献评价指标  
  下载次数:39次 浏览次数:10次