| Respiratory Research | |
| Modulation of respiratory dendritic cells during Klebsiella pneumonia infection | |
| Susanne Herold3  Nelli Baal2  Gregor Bein2  Jürgen Lohmeyer3  Gabriela Michel2  Achim D Gruber1  Olivia Kershaw1  Andreas Wachtendorf2  Anne Lippitsch2  Sabine Kranz2  Holger Hackstein2  | |
| [1] Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany;Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research (DZL), Langhansstr. 7, D-35392, Giessen, Germany;Department of Internal Medicine II, Klinikstrasse 33, Berlin, Germany | |
| 关键词: Plasmacytoid dendritic cells; Pneumonia; Klebsiella pneumonia; | |
| Others : 792801 DOI : 10.1186/1465-9921-14-91 |
|
| received in 2013-02-04, accepted in 2013-09-13, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity.
Method
By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection.
Results
Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators.
Conclusion
These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.
【 授权许可】
2013 Hackstein et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140705040010442.pdf | 1795KB | ||
| Figure 8. | 57KB | Image | |
| Figure 7. | 88KB | Image | |
| Figure 6. | 39KB | Image | |
| Figure 5. | 44KB | Image | |
| Figure 4. | 22KB | Image | |
| Figure 3. | 191KB | Image | |
| Figure 2. | 67KB | Image | |
| Figure 1. | 58KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Ahmad TA, El-Sayed LH, Haroun M, Hussein AA, El Ashry ESH: Development of immunization trials against Klebsiella pneumoniae. Vaccine 2012, 30:2411-2420.
- [2]Livermore DM: Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med 2012, 27:128-142.
- [3]Gupta A: Hospital-acquired infections in the neonatal intensive care unit–Klebsiella pneumoniae. Semin Perinatol 2002, 26:340-345.
- [4]Matsen JM: The sources of hospital infection. Medicine (Baltimore) 1973, 52:271-277.
- [5]Jarvis WR, Munn VP, Highsmith AK, Culver DH, Hughes JM: The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect Control 1985, 6:68-74.
- [6]Yankov IV, Shmilev TI: Ventilator-associated pneumonias in children (I)–diagnostic criteria, etiology and pathogenesis. Folia Med (Plovdiv) 2012, 54:5-11.
- [7]Arnold RS, Thom KA, Sharma S, Phillips M, Kristie Johnson J, Morgan DJ: Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J 2011, 104:40-45.
- [8]Rapp RP, Urban C: Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns. Pharmacotherapy 2012, 32:399-407.
- [9]da Silva RM, Traebert J, Galato D: Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther 2012, 12:663-671.
- [10]Chong Y, Ito Y, Kamimura T: Genetic evolution and clinical impact in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 2011, 11:1499-1504.
- [11]Nordmann P, Cuzon G, Naas T: The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009, 9:228-236.
- [12]Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998, 392:245-252.
- [13]Lambrecht BN, Hammad H: Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 2012, 30:243-270.
- [14]Guilliams M, Lambrecht BN, Hammad H: Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 2013, 6:464-473.
- [15]Kim T, Braciale T: Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS One 2009, 4:e4204.
- [16]Hackstein H, Hagel N, Knoche A, Kranz S, Lohmeyer J, Wulffen W, von Kershaw O, Gruber AD, Bein G, Baal N: Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells. PLoS One 2012, 7:e43320.
- [17]Hackstein H, Wachtendorf A, Kranz S, Lohmeyer J, Bein G, Baal N: Heterogeneity of respiratory dendritic cell subsets and lymphocyte populations in inbred mouse strains. Respir Res 2012, 13:94. BioMed Central Full Text
- [18]Unkel B, Hoegner K, Clausen BE, Lewe-Schlosser P, Bodner J, Gattenloehner S, Janssen H, Seeger W, Lohmeyer J, Herold S: Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest 2012, 122:3652-3664.
- [19]Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Lambrecht BN: Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 2013, 38:322-335.
- [20]Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ: The nature of the principal type 1 interferon-producing cells in human blood. Science 1999, 284:1835-1837.
- [21]Gilliet M, Cao W, Liu Y: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008, 8:594-606.
- [22]Szabo G, Dolganiuc A: The role of plasmacytoid dendritic cell-derived IFN alpha in antiviral immunity. Crit Rev Immunol 2008, 28:61-94.
- [23]Bjorck P: The multifaceted murine plasmacytoid dendritic cell. Hum Immunol 2002, 63:1094-1102.
- [24]Gregorio J, Meller S, Conrad C, Di Nardo A, Homey B, Lauerma A, Arai N, Gallo RL, Digiovanni J, Gilliet M: Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 2010, 207:2921-2930.
- [25]Sung S, Fu S, Rose C, Gaskin F, Ju S, Beaty S: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 2006, 176:2161-2172.
- [26]Ho AWS, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE, Lew FC, Wong KL, Hanson BJ, Macary PA, Kemeny DM: Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J Immunol 2011, 187:6011-6021.
- [27]Ivanov S, Fontaine J, Paget C, Macho Fernandez E, van Maele L, Renneson J, Maillet I, Wolf NM, Rial A, Leger H, Ryffel B, Frisch B, Chabalgoity JA, Sirard JC, Benecke A, Faveeuw C, Trottein F: Key role for respiratory CD103(+) dendritic cells, IFN-gamma, and IL-17 in protection against Streptococcus pneumoniae infection in response to alpha-galactosylceramide. J Infect Dis 2012, 206:723-734.
- [28]Le B, Etchart N, Goubier A, Lira S, Sirard J, van Rooijen N, Caux C, Ait-Yahia S, Vicari A, Kaiserlian D, Dubois B: Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006, 24:191-201.
- [29]Leon B, Lopez-Bravo M, Ardavin C: Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 2007, 26:519-531.
- [30]Furuhashi K, Suda T, Hasegawa H, Suzuki Y, Hashimoto D, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Shibata K, Nakamura H, Chida K: Mouse Lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T cell responses. Am J Respir Cell Mol Biol 2012, 46:165-172.
- [31]Herold S, Tabar TS, Janssen H, Hoegner K, Cabanski M, Lewe-Schlosser P, Albrecht J, Driever F, Vadasz I, Seeger W, Steinmueller M, Lohmeyer J: Exudate macrophages attenuate lung injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. Am J Respir Crit Care Med 2011, 183:1380-1390.
- [32]Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, Thomson AW: Rapamycin inhibits IL-4–induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 2003, 101:4457-4463.
- [33]Hackstein H, Knoche A, Nockher A, Poeling J, Kubin T, Jurk M, Vollmer J, Bein G: The TLR7/8 ligand resiquimod targets monocyte-derived dendritic cell differentiation via TLR8 and augments functional dendritic cell generation. Cell Immunol 2011, 271:401-412.
- [34]Ho AWS, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE, Lew FC, Wong KL, Hanson BJ, Macary PA, Kemeny DM: Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J Immunol 2011, 187:6011-6021.
- [35]Terrazas CA, Terrazas LI, Gomez-Garcia L: Modulation of dendritic cell responses by parasites: a common strategy to survive. J Biomed Biotechnol 2010, 2010:357106.
- [36]Bedoui S, Kupz A, Wijburg OL, Walduck AK, Rescigno M, Strugnell RA: Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. J Immunol 2010, 184:2237-2242.
- [37]Liu B, Woltman AM, Janssen HLA, Boonstra A: Modulation of dendritic cell function by persistent viruses. J Leukoc Biol 2009, 85:205-214.
- [38]Kushwah R, Hu J: Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011, 133:409-419.
- [39]Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, Shibazaki A, Otsuka H, Hijikata A, Watanabe T, Ohara O, Kaisho T, Malissen B, Sato K: Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 2011, 35:958-971.
- [40]Loschko J, Heink S, Hackl D, Dudziak D, Reindl W, Korn T, Krug AB: Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J Immunol 2011, 187:6346-6356.
- [41]Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M: Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 2010, 33:955-966.
- [42]Hotchkiss RS, Monneret G, Payen D: Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 2013, 13:260-268.
- [43]Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K: PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 2011, 41:413-424.
- [44]Sha J, Rosenzweig JA, Kirtley ML, van Lier CJ, Fitts EC, Kozlova EV, Erova TE, Tiner BL, Chopra AK: A non-invasive in vivo imaging system to study dissemination of bioluminescent Yersinia pestis CO92 in a mouse model of pneumonic plague. Microb Pathog 2013, 55:39-50.
PDF