期刊论文详细信息
Radiation Oncology
Influence of body mass index and periprostatic fat on rectal dosimetry in permanent seed prostate brachytherapy
Daniel Taussky1  Guila Delouya2  Aliza Meissner2  Nelson Gruszczynski2  David Tiberi2 
[1] Centre Hospitalier de l’Université de Montréal (CHUM) – Hôpital Notre-Dame, Department of Radiation Oncology, 1560 rue Sherbrooke E, Montréal, Québec H2L 4 M1, Canada;Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM) - Hôpital Notre-Dame, Montréal, Québec, Canada
关键词: Rectal dose;    Brachytherapy;    Body mass index;    Adipose tissue;    Prostate cancer;   
Others  :  820708
DOI  :  10.1186/1748-717X-9-93
 received in 2013-12-27, accepted in 2014-04-05,  发布年份 2014
PDF
【 摘 要 】

Purpose

We examined the influence of body mass index (BMI) and body fat distribution on rectal dose in patients treated with permanent seed brachytherapy for localized prostate cancer.

Methods and materials

We analyzed 213 patients treated with I125 seed brachytherapy for localized prostate cancer. BMI and rectal dosimetry data for all patients were available. Data on visceral and subcutaneous fat distribution at the level of the iliac crest (n = 140) as well as the distribution of periprostatic and subcutaneous fat at the symphysis pubis level were obtained (n = 117). Fat distribution was manually contoured on CT on day 30 after brachytherapy. The correlation between BMI, fat distribution and rectal dose (R100 (in cc), R150 (cc), D2 (Gy)) was analyzed using the Spearman correlation coefficient. Differences in rectal dose between tertiles of body fat distribution were calculated using nonparametric tests.

Results

Periprostatic adipose was only weakly correlated with BMI (r = 0.0.245, p = 0.008) and only weakly correlated with the other fat measurements (r = 0.31-0.37, p < 0.001). On the other hand, BMI was correlated with all other fat measurements (≥0.58, p < 0.001). All the other fat measurements were strongly correlated with each other (r = 0.5-0.87, p < 0.001). Patients with an R100 of >1.3 cc (23% of patients) had less visceral fat (p = 0.004), less subcutaneous fat at the level of the iliac crest (p = 0.046) and a lower BMI (26.8 kg/m2 vs. 28.5 kg/m2, p = 0.02) than patients with an R100 of <1.3 cc. Results were very similar when comparing an R100 of >1.0 cc (34% of patients) across the tertiles. None of the tested linear regression models were predictive (max 12%) of dose to the rectum.

Conclusion

Dose to the rectum is dependent on BMI and body fat distribution. Periprostatic fat does not influence rectal dose. Dose to the rectum remains difficult to predict and depends on many factors, one of which is body fat distribution.

【 授权许可】

   
2014 Tiberi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712053234603.pdf 1250KB PDF download
Figure 3. 43KB Image download
Figure 2. 42KB Image download
Figure 1. 180KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Herstein A, Wallner K, Merrick G, Mitsuyama H, Armstrong J, True L, Cavanagh W, Butler W: I-125 versus Pd-103 for low-risk prostate cancer: long-term morbidity outcomes from a prospective randomized multicenter controlled trial. Cancer J 2005, 11:385-389.
  • [2]Keyes M, Spadinger I, Liu M, Pickles T, Pai H, Hayden A, Moravan V, Halperin R, McKenzie M, Kwan W, Agranovic A, Lapointe V, Morris WJ: Rectal toxicity and rectal dosimetry in low-dose-rate (125) I permanent prostate implants: a long-term study in 1006 patients. Brachytherapy 2012, 11:199-208.
  • [3]Snyder KM, Stock RG, Hong SML, Lo YC, Stone NN: Defining the risk of developing grade 2 proctitis following 125I prostate brachytherapy using a rectal dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 2001, 50:335-341.
  • [4]Tran A, Wallner K, Merrick G, Seeberger J, Armstrong J, Mueller A, Cavanagh W, Lin D, Butler W: Rectal fistulas after prostate brachytherapy. Int J Radiat Oncol Biol Phys 2005, 63:150-154.
  • [5]Salembier C, Lavagnini P, Nickers P, Mangili P, Rijnders A, Polo A, Venselaar J, Hoskin P, GEC ESTRO PROBATE Group: Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol 2007, 83:3-10.
  • [6]Le Fur E, Malhaire JP, Baverez D, Delage F, Perrouin-Verbe MA, Schlurmann F, Guerif S, Fournier G, Pradier O, Valeri A: Impact of learning curve and technical changes on dosimetry in low-dose brachytherapy for prostate cancer. Strahlenther Onkol 2012, 188:1091-1095.
  • [7]Rutten TP, Lawson JM, Marcu LG: Treatment technique evolution and dosimetry trends over seven years of low dose rate prostate brachytherapy at an Australian institution. Phys Med 2013, 29:662-669.
  • [8]McNeely LK, Stone NN, Presser J, Chircus JH, Stock RG: Influence of prostate volume on dosimetry results in real-time 125I seed implantation. Int J Radiat Oncol Biol Phys 2004, 58:292-299.
  • [9]Patil N, Crook J, Saibishkumar EP, Aneja M, Borj J, Pond G, Ma C: The effect of obesity on rectal dosimetry after permanent prostate brachytherapy. Brachytherapy 2009, 8:218-222.
  • [10]Beahrs OH, Henderson DE: Fourth edition of the manual for staging of cancer. Cancer 1992, 69:2869.
  • [11]Chira C, Taussky D, Gruszczynski N, Meissner A, Larrivée S, Carrier JF, Donath D, Delouya G: Unusually high prostate-specific antigen bounce after prostate brachytherapy: Searching for etiologic factors. Brachytherapy 2013, 12:603-607.
  • [12]Delouya G, Taussky D, Ji CR, Sylvestre MP, Donath D: Relationship between prostate-specific antigen bounce body fat distribution and body mass index in permanent seed brachytherapy for prostate cancer. Brachytherapy 2012, 11:214-218.
  • [13]van Roermund JG, Bol GH, Witjes JA, Ruud Bosh JL, Kiemeney LA, van Vulpen M: Periprostatic fat measured on computed tomography as a marker for prostate cancer aggressiveness. World J Urol 2010, 28:699-704.
  • [14]Buckstein M, Kerns S, Forysthe K, Stone NN, Stock RG: Temporal patterns of selected late toxicities in patients treated with brachytherapy or brachytherapy plus external beam radiation for prostate adenocarcinoma. BJU Int 2013, 111:E43-E47.
  • [15]Shiraishi Y, Hanada T, Ohashi T, Yorozu A, Toya K, Saito S, Shigematsu N: Novel parameter predicting grade 2 rectal bleeding after iodine-125 prostate brachytherapy combined with external beam radiation therapy. Int J Radiat Oncol Biol Phys 2013, 87:182-187.
  • [16]Bhindi B, Trottier G, Elharram M, Fernandes KA, Lockwood G, Toi A, Hersey KM, Finelli A, Evans A, van der Kwast TH, Fleshner NE: Measurement of peri-prostatic fat thickness using transrectal ultrasonography (TRUS): a new risk factor for prostate cancer. BJU Int 2012, 110:980-986.
  • [17]Taussky D, Yeung I, Williams T, Pearson S, McLean M, Pond G, Crook J: Rectal-wall dose dependence on postplan timing after permanent-seed prostate brachytherapy. Int J Radiat Oncol Biol Phys 2006, 65:358-363.
  • [18]Ribeiro R, Monteiro C, Cunha V, Oliveira MJ, Freitas M, Fraga A, Principe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhäes J, Oliveira J, Pina F, Mota-Pinto A, Lopes C, Medeiros R: Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res 2012, 31:32. BioMed Central Full Text
  • [19]Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, Zaldivar F, Santos R, Tyson DR, Ornstein DK: Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 2009, 182:1621-1627.
  文献评价指标  
  下载次数:75次 浏览次数:34次