期刊论文详细信息
Particle and Fibre Toxicology
Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in Malaria Symbiotic Control
Guido Favia5  Mauro Mandrioli3  Daniele Daffonchio2  Claudio Bandi4  Luciano Sacchi1  Matteo Valzano5  Mauro Angeletti5  Sara Epis4  Elena Crotti2  Patrizia Scuppa5  Paolo Rossi5  Michela Mosca5  Claudia Damiani5  Irene Ricci5  Aida Capone5 
[1] Dipartimento di Biologia Animale, Università degli Studi di Pavia, Pavia 27100, Italy;Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan 20133, Italy;Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena 41125, Italy;Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan 20133, Italy;Scuola di Bioscienze e Biotecnologie, Università degli Studi di Camerino, Camerino 62032, Italy
关键词: Haemocytes;    Malaria;    Anopheles;    Plasmodium;    Asaia;   
Others  :  1226995
DOI  :  10.1186/1756-3305-6-182
 received in 2013-02-18, accepted in 2013-06-12,  发布年份 2013
PDF
【 摘 要 】

Background

Malaria represents one of the most devastating infectious diseases. The lack of an effective vaccine and the emergence of drug resistance make necessary the development of new effective control methods. The recent identification of bacteria of the genus Asaia, associated with larvae and adults of malaria vectors, designates them as suitable candidates for malaria paratransgenic control.

To better characterize the interactions between Asaia, Plasmodium and the mosquito immune system we performed an integrated experimental approach.

Methods

Quantitative PCR analysis of the amount of native Asaia was performed on individual Anopheles stephensi specimens. Mosquito infection was carried out with the strain PbGFPCON and the number of parasites in the midgut was counted by fluorescent microscopy.

The colonisation of infected mosquitoes was achieved using GFP or DsRed tagged-Asaia strains.

Reverse transcriptase-PCR analysis, growth and phagocytosis tests were performed using An. stephensi and Drosophila melanogaster haemocyte cultures and DsRed tagged-Asaia and Escherichia coli strains.

Results

Using quantitative PCR we have quantified the relative amount of Asaia in infected and uninfected mosquitoes, showing that the parasite does not interfere with bacterial blooming. The correlation curves have confirmed the active replication of Asaia, while at the same time, the intense decrease of the parasite.

The ‘in vitro’ immunological studies have shown that Asaia induces the expression of antimicrobial peptides, however, the growth curves in conditioned medium as well as a phagocytosis test, indicated that the bacterium is not an immune-target.

Using fluorescent strains of Asaia and Plasmodium we defined their co-localisation in the mosquito midgut and salivary glands.

Conclusions

We have provided important information about the relationship of Asaia with both Plasmodium and Anopheles. First, physiological changes in the midgut following an infected or uninfected blood meal do not negatively affect the residing Asaia population that seems to benefit from this condition. Second, Asaia can act as an immune-modulator activating antimicrobial peptide expression and seems to be adapted to the host immune response. Last, the co-localization of Asaia and Plasmodium highlights the possibility of reducing vectorial competence using bacterial recombinant strains capable of releasing anti-parasite molecules.

【 授权许可】

   
2013 Capone et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150927080656407.pdf 2647KB PDF download
Figure 7. 80KB Image download
Figure 6. 127KB Image download
Figure 5. 62KB Image download
Figure 4. 76KB Image download
Figure 3. 63KB Image download
Figure 2. 44KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Shiff C: Integrated approach to malaria control. Clin Microbiol Rev 2002, 15:278-293.
  • [2]Sinden RE: Plasmodium differentiation in the mosquito. Parassitologia 1999, 41:139-148.
  • [3]Sinden RE, Alavi Y, Raine JD: Mosquito-malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness. Insect Biochem Mol Biol 2004, 34:625-629.
  • [4]Vaughan JA: Population dynamics of Plasmodium sporogony. Trends Parasitol 2007, 23:63-70.
  • [5]Taylor LH: Infection rates in, and the number of Plasmodiumfalciparum genotypes carried by Anopheles mosquitoes in Tanzania. Ann Trop Med Parasitol 1999, 93:659-662.
  • [6]Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M: Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol 2007, 37:595-603.
  • [7]Coutinho-Abreu IV, Zhu KY, Ramalho-Ortigao M: Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. Parasitol Int 2010, 59:1-8.
  • [8]Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ: Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011, 331:1074-1077.
  • [9]Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M: Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. PNAS USA 2012, 109:12734-12739.
  • [10]Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D: Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 2007, 104:9047-9051.
  • [11]Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G: Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 2010, 60:644-654.
  • [12]Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der-Keur M, van der-Linden R, Sinden RE, Waters AP, Janse CJ: A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 2004, 137:23-33.
  • [13]Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D, Favia G: Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol 2008, 18:1087-1088.
  • [14]Mølbak L, Molin S, Kroer N: Root growth and exudate production define the frequency of horizontal plasmid transfer in the Rhizosphere. FEMS Microbiol Ecol 2007, 59:167-176.
  • [15]Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P, Raddadi N, Marzorati M, Sacchi L, Clementi E, Genchi M, Mandrioli M, Bandi C, Favia G, Alma A, Daffonchio D: Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 2009, 11:3252-3264.
  • [16]Eurofins probe design. http://www.eurofinsdna.com webcite
  • [17]FastPcr program. http://primerdigital.com/fastpcr.html webcite
  • [18]ProbeMatch toll. http://rpd.cme.msu.edu/probematch/search.jsp webcite
  • [19]Program R. http://cran.r-project.org/bin/ webcite
  • [20]Box GEP, Cox DR: An analysis of transformations. Journal of the Royal Statistical Society Volume 26 2nd edition. 1964, 211-252.
  • [21]Anscombe FJ: Rejection of outliers. American Society for Quality Volume 2 2nd edition. 1960, 123-147.
  • [22]de-Morais GS, Vitorino R, Domingues R, Tomer K, Correia AJ, Amado F, Domingues P: Proteomics of immune-challenged Drosophila melanogaster larvae haemolymph. Biochem Biophys Res Commun 2005, 328:106-115.
  • [23]Kumar S, Barillas-Mury C: Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes. Insect Biochem Mol Biol 2005, 35:721-727.
  • [24]Christophides GK, Vlachou D, Kafatos FC: Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 2004, 198:127-148.
  • [25]Boissier A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I: Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 2012, 8:e1002742.
  • [26]Dong Y, Manfredini F, Dimopoulos G: Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 2009, 5:e1000423.
  • [27]Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC: Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. AmJTrop Med Hyg 1996, 54:214-218.
  • [28]Eichler S, Schaub GA: Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol 2002, 100:17-27.
  • [29]Zayed ME, Bream AS: Biodiversity of the microbial flora associated with two strains of Culex pipiens (Diptera: Culicidae). Commun Agric Appl Biol Sci 2004, 69:229-234.
  • [30]Sinden RE, Dawes EJ, Alavi Y, Waldock J, Finney O, Mendoza J, Butcher GA, Andrews L, Hill AV, Gilbert SC, Basáñez MG: Progression of Plasmodiumberghei through Anopheles stephensi is density-dependent. PLoS Pathog 2007, 3:e195.
  • [31]Imler JL, Bulet P: Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 2005, 86:1-21.
  • [32]Bulet P, Stöcklin R: Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 2005, 12:3-11.
  • [33]Lemaitre B, Hoffmann J: The host defense of drosophila melanogaster. Annu Rev Immunol 2007, 25:697-743.
  • [34]Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FC: The developmental migration of Plasmodium in mosquitoes. Curr Opin Genet Dev 2006, 16:384-391.
  • [35]Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G: Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2006, 2:e52.
  • [36]Mendes AM, Awono-Ambene PH, Nsango SE, Cohuet A, Fontenille D, Kafatos FC, Christophides GK, Morlais I, Vlachou D: Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodiumfalciparum. Infect Immun 2011, 79:4708-4715.
  • [37]Dimopoulos G, Seeley D, Wolf A, Kafatos FC: Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J 1998, 17:6115-6123.
  • [38]Dimopoulos G, Casavant TL, Chang S, Scheetz T, Roberts C, Donohue M, Schultz J, Benes V, Bork P, Ansorge W, Soares MB, Kafatos FC: Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc Natl Acad Sci USA 2000, 97:6619-6624.
  • [39]Vizioli J, Bulet P, Hoffman JA, Kafatos FC, Muller HM, Dimopoulos G: Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 2001, 98:12630-12635.
  文献评价指标  
  下载次数:29次 浏览次数:22次