Molecular Cytogenetics | |
5′RUNX1-3′USP42 chimeric gene in acute myeloid leukemia can occur through an insertion mechanism rather than translocation and may be mediated by genomic segmental duplications | |
Francesco Albano1  Giorgina Specchia1  Cosimo Cumbo1  Claudia Brunetti1  Crescenzio Francesco Minervini1  Angela Minervini1  Angelo Cellamare1  Paola Casieri1  Giuseppina Tota1  Nicoletta Coccaro1  Luisa Anelli1  Antonella Zagaria1  | |
[1] Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section - University of Bari, P.zza G. Cesare, Bari, 11 70124, Italy | |
关键词: Segmental duplications; Insertion event; Cancer genetics; Acute myeloid leukemia; | |
Others : 1149762 DOI : 10.1186/s13039-014-0066-7 |
|
received in 2014-08-13, accepted in 2014-09-17, 发布年份 2014 | |
【 摘 要 】
Background
The runt-related transcription factor 1 (RUNX1) gene is a transcription factor that acts as a master regulator of hematopoiesis and represents one of the most frequent targets of chromosomal rearrangements in human leukemias. The t(7;21)(p22;q22) rearrangement generating a 5?RUNX1-3?USP42 fusion transcript has been reported in two cases of pediatric acute myeloid leukemia (AML) and further in eight adult cases of myeloid neoplasms. We describe the first case of adult AML with a 5?RUNX1-3?USP42 fusion gene generated by an insertion event instead of chromosomal translocation.
Methods
Conventional and molecular cytogenetic analyses allowed the precise characterization of the chromosomal rearrangement and breakpoints identification. Gene expression analysis was performed by quantitative real-time PCR experiments, whereas bioinformatic studies were carried out for revealing structural genomic characteristics of breakpoint regions.
Results
We identified an adult AML case bearing a ins(21;7)(q22;p15p22) generating a 5?RUNX1-3?USP42 fusion gene on der(21) chromosome and causing USP42 gene over-expression. Bioinformatic analysis of the genomic regions involved in ins(21;7)/t(7;21) showed the presence of interchromosomal segmental duplications (SDs) next to the USP42 and RUNX1 genes, that may underlie a non-allelic homologous recombination between chromosome 7 and 21 in AML.
Conclusions
We report the first case of a 5?RUNX1-3?USP42 chimeric gene generated by a chromosomal cryptic insertion in an adult AML patient. Our data revealed that there may be a pivotal role for SDs in this very rare but recurrent chromosomal rearrangement.
【 授权许可】
2014 Zagaria et al.; licensee BioMed Central Ltd.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405100313941.pdf | 1773KB | download | |
Figure 2. | 68KB | Image | download |
Figure 1. | 74KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Tenen DG, Hromas R, Licht JD, Zhang DE: Transcription factors, normal myeloid development, and leukemia. Blood 1997, 90:489-519.
- [2]Ichikawa M, Goyama S, Asai T, Kawazu M, Nakagawa M, Takeshita M, Chiba S, Ogawa S, Kurokawa M: AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J Immunol 2008, 180:4402-4408.
- [3]Link KA, Chou FS, Mulloy JC: Core binding factor at the crossroads: determining the fate of the HSC. J Cell Physiol 2010, 222:50-56.
- [4]De Braekeleer E, Ferec C, De Braekeleer M: RUNX1 translocations in malignant hemopathies. Anticancer Res 2009, 29:1031-1037.
- [5]Paulsson K, Békássy AN, Olofsson T, Mitelman F, Johansson B, Panagopoulos I: A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42. Leukemia 2006, 20:224-229.
- [6]Masetti R, Togni M, Astolfi A, Pigazzi M, Indio V, Rivalta B, Manara E, Rutella S, Basso G, Pession A, Locatelli F: Whole transcriptome sequencing of a paediatric case of de novo acute myeloid leukaemia with del(5q) reveals RUNX1-USP42 and PRDM16-SKI fusion transcripts. Br J Haematol 2014, 166:449-452.
- [7]Ji J, Loo E, Pullarkat S, Yang L, Tirado CA: Acute myeloid leukemia with t(7;21)(p22;q22) and 5q deletion: a case report and literature review. Exp Hematol Oncol 2014, 3:8. BioMed Central Full Text
- [8]Panagopoulos I, Gorunova L, Brandal P, Garnes M, Tierens A, Heim S: Myeloid leukemia with t(7;21)(p22;q22) and 5q deletion. Oncol Rep 2013, 30:1549-1552.
- [9]Jeandidier E, Gervais C, Radford-Weiss I, Zink E, Gangneux C, Eischen A, Galoisy AC, Helias C, Dano L, Cammarata O, Jung G, Harzallah I, Guérin E, Martzolff L, Drénou B, Lioure B, Tancrédi C, Rimelen V, Mauvieux L: A cytogenetic study of 397 consecutive acute myeloid leukemia cases identified three with a t(7;21) associated with 5q abnormalities and exhibiting similar clinical and biological features, suggesting a new, rare acute myeloid leukemia entity. Cancer Genet 2012, 205:365-372.
- [10]Giguère A, Hébert J: Microhomologies and topoisomerase II consensus sequences identified near the breakpoint junctions of the recurrent t(7;21)(p22;q22) translocation in acute myeloid leukemia. Gene Chromosome Canc 2011, 50:228-238.
- [11]Foster N, Paulsson K, Sales M, Cunningham J, Groves M, O¿Connor N, Begum S, Stubbs T, McMullan DJ, Griffiths M, Pratt N, Tauro S: Molecular characterisation of a recurrent, semi-cryptic RUNX1 translocation t(7;21) in myelodysplastic syndrome and acute myeloid leukaemia. Br J Haematol 2010, 148:938-943.
- [12]Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR: Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 2004, 14:2209-2220.
- [13]Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A, Solomon E: Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. Br J Haematol 1996, 94:557-573.
- [14]Nacheva E, Holloway T, Brown K, Bloxham D, Green AR: Philadelphia-negative chronic myeloid leukaemia: detection by FISH of BCR-ABL fusion gene localized either to chromosome 9 or chromosome 22. Br J Haematol 1994, 87:409-412.
- [15]Specchia G, Albano F, Anelli L, Zagaria A, Liso A, La Starza R, Mancini M, Sebastio L, Giugliano E, Saglio G, Liso V, Rocchi M: Insertions generating the 5?RUNX1/3?CBFA2T1 gene in acute myeloid leukemia cases show variable breakpoints. Gene Chromosome Canc 2004, 41:86-91.
- [16]Kim YK, Kim YS, Yoo KJ, Lee HJ, Lee DR, Yeo CY, Baek KH: The expression of Usp42 during embryogenesis and spermatogenesis in mouse. Gene Expr Patterns 2007, 7:143-148.
- [17]Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J 2011, 30:4921-4930.
- [18]Zhang L, Lu HH, Chung WY, Yang J, Li WH: Patterns of segmental duplication in the human genome. Mol Biol Evol 2005, 22:135-141.
- [19]Bailey JA, Eichler EE: Primate segmental duplications: crucibles of evolution, and disease. Nat Rev Genet 2006, 7:898.
- [20]Mefford HC, Eichler EE: Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 2009, 19:196-204.
- [21]Lupski JR: Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998, 14:417-422.
- [22]Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Höglund M, Johansson B, Hagemeijer A, Park SS, Mitelman F, Lupski JR, Fioretos T: The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet 2004, 74:1-10.
- [23]Albano F, Anelli L, Zagaria A, Coccaro N, D¿Addabbo P, Liso V, Rocchi M, Specchia G: Genomic segmental duplications on the basis of the t(9;22) rearrangement in chronic myeloid leukemia. Oncogene 2010, 29:2509-2516.
- [24]Ebert G, Steininger A, Weißmann R, Boldt V, Lind-Thomsen A, Grune J, Badelt S, Heßler M, Peiser M, Hitzler M, Jensen LR, Müller I, Hu H, Arndt PF, Kuss AW, Tebel K, Ullmann R: Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7. BMC Genomics 2014, 15:537. BioMed Central Full Text
- [25]An International System for Human Cytogenetic Nomenclature. 2013.
- [26]Lichter P, Tang Chang CJ, Call K, Hermanson G, Evans GA, Housman D, Ward DC: High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 1990, 247:64-69.