期刊论文详细信息
Particle and Fibre Toxicology
Identification and characterization of alternative splicing in parasitic nematode transcriptomes
Makedonka Mitreva1  Bruce A Rosa2  Samantha N McNulty2  Sahar Abubucker2 
[1] Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA;The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
关键词: Next-generation sequencing;    Alternative splicing;    Transcriptomes;    Parasitic nematodes;   
Others  :  807455
DOI  :  10.1186/1756-3305-7-151
 received in 2014-01-17, accepted in 2014-03-14,  发布年份 2014
PDF
【 摘 要 】

Background

Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes.

Methods

We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data.

Results

Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results.

Conclusions

Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available.

【 授权许可】

   
2014 Abubucker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708111220807.pdf 689KB PDF download
Figure 2. 70KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Breitbart RE, Andreadis A, Nadal-Ginard B: Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 1987, 56:467-495.
  • [2]Sammeth M, Foissac S, Guigo R: A general definition and nomenclature for alternative splicing events. PLoS Comput Biol 2008, 4:e1000147.
  • [3]Nilsen TW, Graveley BR: Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463:457-463.
  • [4]Talavera D, Sheoran R, Lovell SC: Analysis of genetic interaction networks shows that alternatively spliced genes are highly versatile. PLoS One 2013, 8:e55671.
  • [5]Kim E, Magen A, Ast G: Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 2007, 35:125-131.
  • [6]Brett D, Pospisil H, Valcarcel J, Reich J, Bork P: Alternative splicing and genome complexity. Nat Genet 2002, 30:29-30.
  • [7]Irimia M, Rukov JL, Penny D, Roy SW: Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007, 7:188. BioMed Central Full Text
  • [8]Zahler AM: Pre-mRNA splicing and its regulation in Caenorhabditis elegans. WormBook 2012, 1-21.
  • [9]Venables JP, Tazi J, Juge F: Regulated functional alternative splicing in Drosophila. Nucleic Acids Res 2012, 40:1-10.
  • [10]Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008, 40:1413-1415.
  • [11]Ramani AK, Calarco JA, Pan Q, Mavandadi S, Wang Y, Nelson AC, Lee LJ, Morris Q, Blencowe BJ, Zhen M, Fraser AG: Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res 2011, 21:342-348.
  • [12]Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, et al.: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012, 22:1760-1774.
  • [13]El-Abdellati A, De Graef J, Van Zeveren A, Donnan A, Skuce P, Walsh T, Wolstenholme A, Tait A, Vercruysse J, Claerebout E, Geldhof P: Altered avr-14B gene transcription patterns in ivermectin-resistant isolates of the cattle parasites, Cooperia oncophora and Ostertagia ostertagi. Int J Parasitol 2011, 41:951-957.
  • [14]Liebau E, Hoppner J, Muhlmeister M, Burmeister C, Luersen K, Perbandt M, Schmetz C, Buttner D, Brattig N: The secretory omega-class glutathione transferase OvGST3 from the human pathogenic parasite Onchocerca volvulus. FEBS J 2008, 275:3438-3453.
  • [15]Lu SW, Tian D, Borchardt-Wier HB, Wang X: Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol 2008, 162:1-15.
  • [16]Massey HC Jr, Ranjit N, Stoltzfus JD, Lok JB: Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2. Int J Parasitol 2013, 43:515-520.
  • [17]Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics 2010, 95:315-327.
  • [18]Clarke K, Yang Y, Marsh R, Xie L, Zhang KK: Comparative analysis of de novo transcriptome assembly. Sci China Life Sci 2013, 56:156-162.
  • [19]Yang Y, Smith SA: Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics 2013, 14:328. BioMed Central Full Text
  • [20]Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P: Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinforma 2011, 12(14):S2.
  • [21]Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, Chiari Y, Belkhir K, Ranwez V, Galtier N: Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour 2012, 12:834-845.
  • [22]Martin J, Abubucker S, Heizer E, Taylor CM, Mitreva M: Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data. Nucleic Acids Res 2012, 40:D720-D728.
  • [23]Cantacessi C, Gasser RB, Strube C, Schnieder T, Jex AR, Hall RS, Campbell BE, Young ND, Ranganathan S, Sternberg PW, Mitreva M: Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2011, 29:261-271.
  • [24]Cantacessi C, Jex AR, Hall RS, Young ND, Campbell BE, Joachim A, Nolan MJ, Abubucker S, Sternberg PW, Ranganathan S, Mitreva M, Gasser RB: A practical, bioinformatic workflow system for large data sets generated by next-generation sequencing. Nucleic Acids Res 2010, 38:e171.
  • [25]Cantacessi C, Mitreva M, Campbell BE, Hall RS, Young ND, Jex AR, Ranganathan S, Gasser RB: First transcriptomic analysis of the economically important parasitic nematode, Trichostrongylus colubriformis, using a next-generation sequencing approach. Infect Genet Evol 2010, 10:1199-1207.
  • [26]Cantacessi C, Mitreva M, Jex AR, Young ND, Campbell BE, Hall RS, Doyle MA, Ralph SA, Rabelo EM, Ranganathan S, Sternberg PW, Loukas A, Gasser RB: Massively parallel sequencing and analysis of the Necator americanus transcriptome. PLoS Negl Trop Dis 2010, 4:e684.
  • [27]Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M: Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes. Ostertagia ostertagi and Cooperia oncophora. BMC Genomics 2013, 14:118. BioMed Central Full Text
  • [28]McNulty SN, Abubucker S, Simon GM, Mitreva M, McNulty NP, Fischer K, Curtis KC, Brattig NW, Weil GJ, Fischer PU: Transcriptomic and proteomic analyses of a Wolbachia-free filarial parasite provide evidence of trans-kingdom horizontal gene transfer. PLoS One 2012, 7:e45777.
  • [29]Menon R, Gasser RB, Mitreva M, Ranganathan S: An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications. BMC Genomics 2012, 13(7):S10.
  • [30]Wang Z, Abubucker S, Martin J, Wilson RK, Hawdon J, Mitreva M: Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation. BMC Genomics 2010, 11:307. BioMed Central Full Text
  • [31]Bracco L, Kearsey J: The relevance of alternative RNA splicing to pharmacogenomics. Trends Biotechnol 2003, 21:346-353.
  • [32]Hagiwara M: Alternative splicing: a new drug target of the post-genome era. Biochim Biophys Acta 2005, 1754:324-331.
  • [33]Laughton DL, Lunt GG, Wolstenholme AJ: Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand binding domains but different ion channels. Gene 1997, 201:119-125.
  • [34]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376-380.
  • [35]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011, 17:10-12.
  • [36]Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35:7188-7196.
  • [37]Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013, 41:D590-D596.
  • [38]Consortium THM: A framework for human microbiome research. Nature 2012, 486:215-221.
  • [39]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9:357-359.
  • [40]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36. BioMed Central Full Text
  • [41]Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R, Ganesan U, Grove C, Howe K, Kadam S, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Nash B, Ozersky P, Paulini M, Raciti D, Rangarajan A, Schindelman G, Shi X, Schwarz EM, Ann Tuli M, Van Auken K, Wang D, et al.: WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 2012, 40:D735-741.
  • [42]Rosa BA, Jasmer DP, Mitreva M: Genome-Wide Tissue-Specific Gene Expression, Co-expression and Regulation of Co-expressed Genes in Adult Nematode Ascaris suum. PLoS Negl Trop Dis 2014, 8:e2678.
  • [43]Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, Tyagi R, Heizer E, Zhang X, Bhonagiri-Palsikar V, Minx P, Warren WC, Wang Q, Zhan B, Hotez PJ, Sternberg PW, Dougall A, Gaze ST, Mulvenna J, Sotillo J, Ranganathan S, Rabelo EM, Wilson RK, Felgner PL, Bethony J, Hawdon JM, Gasser RB, Loukas A, Mitreva M: Genome of the human hookworm Necator americanus. Nat Genet 2014.
  • [44]Wasmuth J, Blaxter M: Obtaining accurate translations from expressed sequence tags. Methods Mol Biol 2009, 533:221-239.
  • [45]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [46]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33:W116-W120.
  • [47]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995, 57:289-300.
  • [48]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14:178-192.
  • [49]Misner I, Bicep C, Lopez P, Halary S, Bapteste E, Lane CE: Sequence comparative analysis using networks: software for evaluating de novo transcript assembly from next-generation sequencing. Mol Biol Evol 2013, 30:1975-1986.
  • [50]Bao E, Jiang T, Girke T: BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences. Bioinformatics 2013, 29:1250-1259.
  • [51]Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I: De novo assembly and analysis of RNA-seq data. Nat Methods 2010, 7:909-912.
  • [52]Irimia M, Rukov JL, Penny D, Garcia-Fernandez J, Vinther J, Roy SW: Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. Mol Biol Evol 2008, 25:375-382.
  • [53]Rukov JL, Irimia M, Mork S, Lund VK, Vinther J, Arctander P: High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae. Mol Biol Evol 2007, 24:909-917.
  • [54]Plenge-Bonig A, Kromer M, Buttner DW: Light and electron microscopy studies on Onchocerca jakutensis and O. flexuosa of red deer show different host-parasite interactions. Parasitol Res 1995, 81:66-73.
  • [55]Craig BH, Pilkington JG, Pemberton JM: Sex ratio and morphological polymorphism in an isolated, endemic Teladorsagia circumcincta population. J Helminthol 2010, 84:208-215.
  • [56]Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS: A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 2013, 8:e69618.
  • [57]Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, Ribeiro JM, Saif S, Levin JZ, Fan L, Zeng Q, Russ C, Wortman JR, Fink DL, Birren BW, Nutman TB: Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet 2013, 45:495-500.
  • [58]Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, et al.: Draft genome of the filarial nematode parasite Brugia malayi. Science 2007, 317:1756-1760.
  • [59]Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, Wrobel N, Thompson M, Schmid CD, Goto S, Bringaud F, Wolstenholme A, Bandi C, Epe C, Kaminsky R, Blaxter M, Maser P: The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J 2012, 26:4650-4661.
  • [60]Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, Yang L, Zeng N, Xu X, Xiong Z, Chen F, Wu X, Zhang G, Fang X, Kang Y, Anderson GA, Harris TW, Campbell BE, Vlaminck J, Wang T, Cantacessi C, Schwarz EM, Ranganathan S, Geldhof P, Nejsum P, Sternberg PW, Yang H, Wang J, Wang J, Gasser RB: Ascaris suum draft genome. Nature 2011, 479:529-533.
  • [61]Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA: The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol 2013, 14:R88. BioMed Central Full Text
  • [62]Mitreva M, Jasmer DP, Zarlenga DS, Wang Z, Abubucker S, Martin J, Taylor CM, Yin Y, Fulton L, Minx P, Yang SP, Warren WC, Fulton RS, Bhonagiri V, Zhang X, Hallsworth-Pepin K, Clifton SW, McCarter JP, Appleton J, Mardis ER, Wilson RK: The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 2011, 43:228-235.
  • [63]Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, Hall RS, Mondal A, Howe AC, Pell J, Hofmann A, Boag PR, Zhu XQ, Gregory TR, Loukas A, Williams BA, Antoshechkin I, Brown CT, Sternberg PW, Gasser RB: The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol 2013, 14:R89. BioMed Central Full Text
  • [64]Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF, Christensen BM, Michalski ML: A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi. PLoS Negl Trop Dis 2011, 5:e1409.
  • [65]Wollerton MC, Gooding C, Robinson F, Brown EC, Jackson RJ, Smith CW: Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 2001, 7:819-832.
  • [66]MacMorris MA, Zorio DA, Blumenthal T: An exon that prevents transport of a mature mRNA. Proc Natl Acad Sci U S A 1999, 96:3813-3818.
  • [67]Van Nostrand EL, Sanchez-Blanco A, Wu B, Nguyen A, Kim SK: Roles of the developmental regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet 2013, 9:e1003325.
  • [68]Van Auken K, Weaver D, Robertson B, Sundaram M, Saldi T, Edgar L, Elling U, Lee M, Boese Q, Wood WB: Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development 2002, 129:5255-5268.
  • [69]Van Nostrand EL, Kim SK: Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions. Genome Res 2013, 23:941-953.
  • [70]Boije H, Ring H, Shirazi Fard S, Grundberg I, Nilsson M, Hallbook F: Alternative splicing of the chromodomain protein Morf4l1 pre-mRNA has implications on cell differentiation in the developing chicken retina. J Mol Neurosci 2013, 51:615-628.
  • [71]Kita Y, Nishiyama M, Nakayama KI: Identification of CHD7S as a novel splicing variant of CHD7 with functions similar and antagonistic to those of the full-length CHD7L. Genes Cells 2012, 17:536-547.
  文献评价指标  
  下载次数:4次 浏览次数:29次