期刊论文详细信息
Retrovirology
A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity
Bernard Lagane1  Esther Kellenberger4  Jose Alcami3  Fernando Arenzana-Seisdedos1  Hugues Lortat-Jacob5  Philippe Colin2  Almudena Cascajero3  Jean-Thomas Heinrich4  Stéphane Azoulay4  Isabelle Staropoli1  Javier Garcia-Perez3 
[1] Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, 75015, France;Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, 75015, France;AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain;Université de Strasbourg UMR7200, Illkirch, France;CEA, DSV, IBS, Grenoble, 38027, France
关键词: Allosteric inhibitor;    Resistance;    Maraviroc;    gp120;    CD4;    CCR5;    HIV replication capacity;    HIV entry;    AIDS;    HIV-1;   
Others  :  1221164
DOI  :  10.1186/s12977-015-0177-1
 received in 2015-02-11, accepted in 2015-04-22,  发布年份 2015
PDF
【 摘 要 】

Background

Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited.

Results

Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3.

Conclusion

These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients.

【 授权许可】

   
2015 Garcia-Perez et al.

【 预 览 】
附件列表
Files Size Format View
20150727104017827.pdf 2267KB PDF download
Figure8. 71KB Image download
Figure7. 30KB Image download
Figure6. 44KB Image download
Figure5. 55KB Image download
Figure4. 21KB Image download
Figure3. 48KB Image download
Figure2. 31KB Image download
Figure1. 125KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

Figure8.

【 参考文献 】
  • [1]Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ et al.. International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014; 66:1-79.
  • [2]Cormier EG, Dragic T. The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. J Virol. 2002; 76:8953-8957.
  • [3]Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL et al.. Structure of a V3-containing HIV-1 gp120 core. Science. 2005; 310:1025-1028.
  • [4]Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998; 393:648-659.
  • [5]Brelot A, Heveker N, Adema K, Hosie MJ, Willett B, Alizon M. Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J Virol. 1999; 73:2576-2586.
  • [6]Brower ET, Schon A, Klein JC, Freire E. Binding thermodynamics of the N-terminal peptide of the CCR5 coreceptor to HIV-1 envelope glycoprotein gp120. Biochemistry. 2009; 48:779-785.
  • [7]Cormier EG, Persuh M, Thompson DA, Lin SW, Sakmar TP, Olson WC et al.. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci USA. 2000; 97:5762-5767.
  • [8]Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P et al.. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem. 1999; 274:9617-9626.
  • [9]Huang CC, Lam SN, Acharya P, Tang M, Xiang SH, Hussan SS et al.. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science. 2007; 317:1930-1934.
  • [10]Mkrtchyan SR, Markosyan RM, Eadon MT, Moore JP, Melikyan GB, Cohen FS. Ternary complex formation of human immunodeficiency virus type 1 Env, CD4, and chemokine receptor captured as an intermediate of membrane fusion. J Virol. 2005; 79:11161-11169.
  • [11]Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res. 2013; 98:158-170.
  • [12]Moore JP, Kuritzkes DR. A piece de resistance: how HIV-1 escapes small molecule CCR5 inhibitors. Curr Opin HIV AIDS. 2009; 4:118-124.
  • [13]Garcia-Perez J, Rueda P, Alcami J, Rognan D, Arenzana-Seisdedos F, Lagane B et al.. Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J Biol Chem. 2011; 286:33409-33421.
  • [14]Garcia-Perez J, Rueda P, Staropoli I, Kellenberger E, Alcami J, Arenzana-Seisdedos F et al.. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem. 2011; 286:4978-4990.
  • [15]Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I et al.. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science. 2013; 341:1387-1390.
  • [16]Roche M, Jakobsen MR, Sterjovski J, Ellett A, Posta F, Lee B et al.. HIV-1 escape from the CCR5 antagonist maraviroc associated with an altered and less-efficient mechanism of gp120-CCR5 engagement that attenuates macrophage tropism. J Virol. 2011; 85:4330-4342.
  • [17]Roche M, Salimi H, Duncan R, Wilkinson BL, Chikere K, Moore MS et al.. A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology. 2013; 10:43. BioMed Central Full Text
  • [18]Tilton JC, Wilen CB, Didigu CA, Sinha R, Harrison JE, Agrawal-Gamse C et al.. A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol. 2010; 84:10863-10876.
  • [19]Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, Stockdale M et al.. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol. 2007; 81:2359-2371.
  • [20]Pugach P, Marozsan AJ, Ketas TJ, Landes EL, Moore JP, Kuhmann SE. HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology. 2007; 361:212-228.
  • [21]Berro R, Klasse PJ, Jakobsen MR, Gorry PR, Moore JP, Sanders RW. V3 determinants of HIV-1 escape from the CCR5 inhibitors maraviroc and vicriviroc. Virology. 2012; 427:158-165.
  • [22]Kuhmann SE, Pugach P, Kunstman KJ, Taylor J, Stanfield RL, Snyder A et al.. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol. 2004; 78:2790-2807.
  • [23]Ogert RA, Hou Y, Ba L, Wojcik L, Qiu P, Murgolo N et al.. Clinical resistance to vicriviroc through adaptive V3 loop mutations in HIV-1 subtype D gp120 that alter interactions with the N-terminus and ECL2 of CCR5. Virology. 2010; 400:145-155.
  • [24]Tsibris AM, Sagar M, Gulick RM, Su Z, Hughes M, Greaves W et al.. In vivo emergence of vicriviroc resistance in a human immunodeficiency virus type 1 subtype C-infected subject. J Virol. 2008; 82:8210-8214.
  • [25]Anastassopoulou CG, Ketas TJ, Klasse PJ, Moore JP. Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. Proc Natl Acad Sci USA. 2009; 106:5318-5323.
  • [26]Berro R, Sanders RW, Lu M, Klasse PJ, Moore JP. Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS Pathog. 2009; 5:e1000548.
  • [27]Ratcliff AN, Shi W, Arts EJ. HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol. 2013; 87:923-934.
  • [28]Recordon-Pinson P, Raymond S, Bellecave P, Marcelin AG, Soulie C, Descamps D et al.. HIV-1 dynamics and coreceptor usage in Maraviroc-treated patients with ongoing replication. Antimicrob Agents Chemother. 2013; 57:930-935.
  • [29]Putcharoen O, Lee SH, Henrich TJ, Hu Z, Vanichanan J, Coakley E et al.. HIV-1 clinical isolates resistant to CCR5 antagonists exhibit delayed entry kinetics that are corrected in the presence of drug. J Virol. 2012; 86:1119-1128.
  • [30]Tsibris AM, Hu Z, Paredes R, Leopold KE, Putcharoen O, Schure AL et al.. Vicriviroc resistance decay and relative replicative fitness in HIV-1 clinical isolates under sequential drug selection pressures. J Virol. 2012; 86:6416-6426.
  • [31]Anastassopoulou CG, Marozsan AJ, Matet A, Snyder AD, Arts EJ, Kuhmann SE et al.. Escape of HIV-1 from a small molecule CCR5 inhibitor is not associated with a fitness loss. PLoS Pathog. 2007; 3:e79.
  • [32]Pfaff JM, Wilen CB, Harrison JE, Demarest JF, Lee B, Doms RW et al.. HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J Virol. 2010; 84:6505-6514.
  • [33]Flynn JK, Paukovics G, Moore MS, Ellett A, Gray LR, Duncan R et al.. The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets. Virology. 2013; 442:51-58.
  • [34]Chikere K, Chou T, Gorry PR, Lee B. Affinofile profiling: how efficiency of CD4/CCR5 usage impacts the biological and pathogenic phenotype of HIV. Virology. 2013; 435:81-91.
  • [35]Olson WC, Rabut GE, Nagashima KA, Tran DN, Anselma DJ, Monard SP et al.. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol. 1999; 73:4145-4155.
  • [36]Garcia-Perez J, Sanchez-Palomino S, Perez-Olmeda M, Fernandez B, Alcami J. A new strategy based on recombinant viruses as a tool for assessing drug susceptibility of human immunodeficiency virus type 1. J Med Virol. 2007; 79:127-137.
  • [37]Heredia A, Latinovic O, Gallo RC, Melikyan G, Reitz M, Le N et al.. Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1. Proc Natl Acad Sci USA. 2008; 105:20476-20481.
  • [38]Parker ZF, Iyer SS, Wilen CB, Parrish NF, Chikere KC, Lee FH et al.. Transmitted/founder and chronic HIV-1 envelope proteins are distinguished by differential utilization of CCR5. J Virol. 2013; 87:2401-2411.
  • [39]Pugach P, Ray N, Klasse PJ, Ketas TJ, Michael E, Doms RW et al.. Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities. Virology. 2009; 387:296-302.
  • [40]Roche M, Jakobsen MR, Ellett A, Salimiseyedabad H, Jubb B, Westby M et al.. HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry. Retrovirology. 2011; 8:89. BioMed Central Full Text
  • [41]Healey D, Dianda L, Moore JP, McDougal JS, Moore MJ, Estess P et al.. Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4 + cells from virus binding. J Exp Med. 1990; 172:1233-1242.
  • [42]Xu XH, Wen Z, Brownlow WJ. Ultrasensitive analysis of binding affinity of HIV receptor and neutralizing antibody using solution-phase electrochemiluminescence assay. J Electroanal Chem (Lausanne Switz). 2013; 688:53-60.
  • [43]Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K et al.. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci USA. 2006; 103:15160-15165.
  • [44]Zhang W, Godillot AP, Wyatt R, Sodroski J, Chaiken I. Antibody 17b binding at the coreceptor site weakens the kinetics of the interaction of envelope glycoprotein gp120 with CD4. Biochemistry. 2001; 40:1662-1670.
  • [45]Sterjovski J, Churchill MJ, Roche M, Ellett A, Farrugia W, Wesselingh SL et al.. CD4-binding site alterations in CCR5-using HIV-1 envelopes influencing gp120-CD4 interactions and fusogenicity. Virology. 2011; 410:418-428.
  • [46]Colin P, Benureau Y, Staropoli I, Wang Y, Gonzalez N, Alcami J et al.. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proc Natl Acad Sci USA. 2013; 110:9475-9480.
  • [47]Connell BJ, Baleux F, Coic YM, Clayette P, Bonnaffe D, Lortat-Jacob H. A synthetic heparan sulfate-mimetic peptide conjugated to a mini CD4 displays very high anti- HIV-1 activity independently of coreceptor usage. Chem Biol. 2012; 19:131-139.
  • [48]Doranz BJ, Baik SS, Doms RW. Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J Virol. 1999; 73:10346-10358.
  • [49]Berro R, Klasse PJ, Lascano D, Flegler A, Nagashima KA, Sanders RW et al.. Multiple CCR5 conformations on the cell surface are used differentially by human immunodeficiency viruses resistant or sensitive to CCR5 inhibitors. J Virol. 2011; 85:8227-8240.
  • [50]Flegler AJ, Cianci GC, Hope TJ. CCR5 conformations are dynamic and modulated by localization, trafficking and g protein association. PLoS One. 2014; 9:e89056.
  • [51]Xiang SH, Wang L, Abreu M, Huang CC, Kwong PD, Rosenberg E et al.. Epitope mapping and characterization of a novel CD4-induced human monoclonal antibody capable of neutralizing primary HIV-1 strains. Virology. 2003; 315:124-134.
  • [52]Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC et al.. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science. 2013; 342:1477-1483.
  • [53]Kwon JC, Kim SH, Park SH, Choi SM, Lee DG, Choi JH et al.. Molecular epidemiologic analysis of methicillin-resistant Staphylococcus aureus isolates from bacteremia and nasal colonization at 10 intensive care units: multicenter prospective study in Korea. J Korean Med Sci. 2011; 26:604-611.
  • [54]Pancera M, Majeed S, Ban YE, Chen L, Huang CC, Kong L et al.. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA. 2010; 107:1166-1171.
  • [55]Cavrois M, De Noronha C, Greene WC. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol. 2002; 20:1151-1154.
  • [56]Melikyan GB, Platt EJ, Kabat D. The role of the N-terminal segment of CCR5 in HIV-1 Env-mediated membrane fusion and the mechanism of virus adaptation to CCR5 lacking this segment. Retrovirology. 2007; 4:55. BioMed Central Full Text
  • [57]Tamamis P, Floudas CA. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One. 2014; 9:e95767.
  • [58]Lagane B, Garcia-Perez J, Kellenberger E. Modeling the allosteric modulation of CCR5 function by Maraviroc. Drug Discov Today Technol. 2013; 10:e297-e305.
  • [59]Marozsan AJ, Moore DM, Lobritz MA, Fraundorf E, Abraha A, Reeves JD et al.. Differences in the fitness of two diverse wild-type human immunodeficiency virus type 1 isolates are related to the efficiency of cell binding and entry. J Virol. 2005; 79:7121-7134.
  • [60]Reeves JD, Gallo SA, Ahmad N, Miamidian JL, Harvey PE, Sharron M et al.. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci USA. 2002; 99:16249-16254.
  • [61]Agrawal-Gamse C, Lee FH, Haggarty B, Jordan AP, Yi Y, Lee B et al.. Adaptive mutations in a human immunodeficiency virus type 1 envelope protein with a truncated V3 loop restore function by improving interactions with CD4. J Virol. 2009; 83:11005-11015.
  • [62]Platt EJ, Durnin JP, Kabat D. Kinetic factors control efficiencies of cell entry, efficacies of entry inhibitors, and mechanisms of adaptation of human immunodeficiency virus. J Virol. 2005; 79:4347-4356.
  • [63]Blanpain C, Vanderwinden JM, Cihak J, Wittamer V, Le Poul E, Issafras H et al.. Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies. Mol Biol Cell. 2002; 13:723-737.
  • [64]Berro R, Yasmeen A, Abrol R, Trzaskowski B, Abi-Habib S, Grunbeck A et al.. Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J Virol. 2013; 87:6569-6581.
  • [65]Alves ID, Salamon Z, Hruby VJ, Tollin G. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry. 2005; 44:9168-9178.
  • [66]Mondal S, Khelashvili G, Johner N, Weinstein H. How the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment. Adv Exp Med Biol. 2014; 796:55-74.
  • [67]Liu Y, Belkina NV, Shaw S. HIV infection of T cells: actin-in and actin-out. Sci Signal. 2009; 2:pe23.
  • [68]Harmon B, Campbell N, Ratner L. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog. 2010; 6:e1000956.
  • [69]Abrol R, Trzaskowski B, Goddard WA, 3rd, Nesterov A, Olave I, Irons C (2014) Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor. In: Proceedings of the National Academy of Sciences of the United States of America
  • [70]Laakso MM, Lee FH, Haggarty B, Agrawal C, Nolan KM, Biscone M et al.. V3 loop truncations in HIV-1 envelope impart resistance to coreceptor inhibitors and enhanced sensitivity to neutralizing antibodies. PLoS Pathog. 2007; 3:e117.
  • [71]Lin G, Bertolotti-Ciarlet A, Haggarty B, Romano J, Nolan KM, Leslie GJ et al.. Replication-competent variants of human immunodeficiency virus type 2 lacking the V3 loop exhibit resistance to chemokine receptor antagonists. J Virol. 2007; 81:9956-9966.
  • [72]Nolan KM, Jordan AP, Hoxie JA. Effects of partial deletions within the human immunodeficiency virus type 1 V3 loop on coreceptor tropism and sensitivity to entry inhibitors. J Virol. 2008; 82:664-673.
  • [73]Johnston SH, Lobritz MA, Nguyen S, Lassen K, Delair S, Posta F et al.. A quantitative affinity-profiling system that reveals distinct CD4/CCR5 usage patterns among human immunodeficiency virus type 1 and simian immunodeficiency virus strains. J Virol. 2009; 83:11016-11026.
  • [74]Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973; 22:3099-3108.
  • [75]Lagane B, Ballet S, Planchenault T, Balabanian K, Le Poul E, Blanpain C et al.. Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis. Mol Pharmacol. 2005; 67:1966-1976.
  • [76]Jin J, Colin P, Staropoli I, Lima-Fernandes E, Ferret C, Demir A et al.. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry. J Biol Chem. 2014; 289:19042-19052.
  • [77]Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W et al.. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003; 24:1999-2012.
  • [78]Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V et al.. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010; 330:1066-1071.
  文献评价指标  
  下载次数:125次 浏览次数:31次