Virology Journal | |
Anti-HBV efficacy of combined siRNAs targeting viral gene and heat shock cognate 70 | |
Zhaoxin Zheng3  Zhongtian Qi2  Weiyao Yan3  Ye Jiao3  Shuang Liu3  Mingqiu Liu3  Mingmei Cao2  An Xiao1  Zhongqi Bian3  | |
[1] Center for Infectious Diseases, Kunming General Hospital, PLA, 212 Daguan Rd, Kunming, 650032, P. R. China;Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Rd, Shanghai, 200433, P. R. China;State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Rd, Shanghai, 200433, P. R. China | |
关键词: Combinational RNAi; Heat shock cognate 70; Short hairpin RNA; RNA interference; Hepatitis B virus; | |
Others : 1153188 DOI : 10.1186/1743-422X-9-275 |
|
received in 2012-04-11, accepted in 2012-11-12, 发布年份 2012 | |
【 摘 要 】
Background
Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Because of the limited effectiveness of existing vaccines and drugs, development of novel antiviral strategies is urgently needed. Heat stress cognate 70 (Hsc70) is an ATP-binding protein of the heat stress protein 70 family. Hsc70 has been found to be required for HBV DNA replication. Here we report, for the first time, that combined siRNAs targeting viral gene and siHsc70 are highly effective in suppressing ongoing HBV expression and replication.
Methods
We constructed two plasmids (S1 and S2) expressing short hairpin RNAs (shRNAs) targeting surface open reading frame of HBV(HBVS) and one plasmid expressing shRNA targeting Hsc70 (siHsc70), and we used the EGFP-specific siRNA plasmid (siEGFP) as we had previously described. First, we evaluated the gene-silencing efficacy of both shRNAs using an enhanced green fluorescent protein (EGFP) reporter system and flow cytometry in HEK293 and T98G cells. Then, the antiviral potencies of HBV-specific siRNA (siHBV) in combination with siHsc70 in HepG2.2.15 cells were investigated. Moreover, type I IFN and TNF-α induction were measured by quantitative real-time PCR and ELISA.
Results
Cotransfection of either S1 or S2 with an EGFP plasmid produced an 80%–90% reduction in EGFP signal relative to the control. This combinational RNAi effectively and specifically inhibited HBV protein, mRNA and HBV DNA, resulting in up to a 3.36 log10 reduction in HBV load in the HepG2.2.15 cell culture supernatants. The combined siRNAs were more potent than siHBV or siHsc70 used separately, and this approach can enhance potency in suppressing ongoing viral gene expression and replication in HepG2.2.15 cells while forestalling escape by mutant HBV. The antiviral synergy of siHBV used in combination with siHsc70 produced no cytotoxicity and induced no production of IFN-α, IFN-β and TNF-α in transfected cells.
Conclusions
Our combinational RNAi was sequence-specific, effective against wild-type and mutant drug-resistant HBV strains, without triggering interferon response or producing any side effects. These findings indicate that combinational RNAi has tremendous promise for developing innovative therapy against viral infection.
【 授权许可】
2012 Bian et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150407051742343.pdf | 3200KB | download | |
Figure 4. | 49KB | Image | download |
Figure 3. | 75KB | Image | download |
Figure 2. | 124KB | Image | download |
Figure 1. | 131KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Lee WM: Hepatitis B virus infection. N Engl J Med 1997, 337:1733-1745.
- [2]Kao JH, Chen DS: Global control of hepatitis B virus infection. Lancet Infect Dis 2002, 2:395-403.
- [3]Ganem D, Prince AM: Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med 2004, 350:1118-1129.
- [4]Liaw YF, Chu CM: Hepatitis B virus infection. Lancet 2009, 373:582-592.
- [5]Goldstein ST, Zhou F, Hadler SC, Bell BP, Mast EE, Margolis HS: A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int J Epidemiol 2005, 34:1329-1339.
- [6]Lok AS, McMahon BJ: Chronic hepatitis B: update 2009. Hepatology 2009, 50:661-662.
- [7]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
- [8]Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293-296.
- [9]Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ: Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001, 293:1146-1150.
- [10]Siomi H, Siomi MC: On the road to reading the RNA-interference code. Nature 2009, 457:396-404.
- [11]Davidson BL, McCray PB: Current prospects for RNA interference-based therapies. Nature Rev Genet 2011, 12:329-340.
- [12]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411:494-498.
- [13]Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296:550-553.
- [14]Jacque JM, Triques K, Stevenson M: Modulation of HIV-1 replication by RNA interference. Nature 2002, 418:435-438.
- [15]Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp A: siRNA-directed inhibition of HIV-1 infection. Nat Med 2002, 8:681-686.
- [16]Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008, 134:577-586.
- [17]McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA: Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotech 2003, 21:639-644.
- [18]Shlomai A, Shaul Y: Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 2003, 37:764-770.
- [19]Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B: Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 2005, 23:1002-1007.
- [20]Uprichard SL, Boyd B, Althage A, Chisari FV: Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 2005, 102:773-778.
- [21]Ebert G, Poeck H, Lucifora J, Baschuk N, Esser K, Esposito I, Hartmann G, Protzer U: 5’Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human Liver cells and mice. Gastroenterol 2011, 141:696-706.
- [22]McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA: RNA interference in adult mice. Nature 2002, 418:38-39.
- [23]Kapadia SB, Brideau-Andersen A, Chisari FV: Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA 2003, 100:2014-2018.
- [24]Huang F, Hua X, Yang S, Yuan C, Zhang W: Effective inhibition of hepatitis E virus replication in A549 cells and piglets by RNA interference (RNAi) targeting RNA-dependent RNA polymerase. Antiviral Res 2009, 83:274-281.
- [25]Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J: Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 2004, 101:8676-8681.
- [26]Akerstrom S, Mirazimi A, Tan YJ: Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res 2007, 73:219-227.
- [27]Geisbert TW, Lee A, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, Jong S, Tavakoli I, Judge A, Hensley LE, MacLachlan I: Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference:a proof-of-concept study. Lancet 2010, 375:1896-1905.
- [28]Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I: Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005, 23:457-462.
- [29]Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G: Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005, 11:263-270.
- [30]Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS, Khvorova A: Induction of the interferon response by siRNA is cell type-and duplex length-dependent. RNA 2006, 12:988-993.
- [31]Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR: Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003, 5:834-839.
- [32]Peer D, Lieberman J: Special delivery: targeted therapy with small RNAs. Gene Ther 2011, 18:1127-1133.
- [33]Bian ZQ, Zheng ZX: RNA Interference molecular mechanism and preventive strategy against viruses. 1st edition. Beijing: Scientific Publishers; 2009.
- [34]Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA: Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441:537-541.
- [35]Lambert C, Prange R: Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci USA 2003, 100:5199-5204.
- [36]Prange R, Werr M, Loffler-Mary H: Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 1999, 380:305-314.
- [37]Parent R, Qu X, Petit MA, Beretta L: The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology 2009, 49:1798-1809.
- [38]Nakagawa S, Umehara T, Matsuda C, Kuge S, Sudoh M, Kohara M: Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 2007, 353:882-888.
- [39]Eddy EM: HSP70-2 heat-shock protein of mouse spermatogenic cells. J Exp Zool 1998, 282:261-271.
- [40]Pérez-Vargas J, Romero P, López S, Arias CF: The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 2006, 80:3322-3331.
- [41]Beck J, Nassal M: Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 2003, 278:36128-36138.
- [42]Hu J, Flores D, Toft D, Wang X, Nguyen D: Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 2004, 78:13122-13131.
- [43]Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, Farese RV Jr, Ott M: Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nature Med 2010, 16:1295-1298.
- [44]Chen YC, Su WC, Huang JY, Chao TC, Jeng KS, Machida K, Lai MM: Polo-like kinase 1 is involved in hepatitis C virus replication by hyperphosphorylating NS5A. J Virol 2010, 84:7983-7993.
- [45]Liu K, Qian L, Wang JL, Li WR, Deng XY, Chen XL, Sun W, Wei HD, Qian XH, Jiang Y, He FC: Two-dimensional blue native/SDS-PAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 Cells. Mol Cell Proteomics 2009, 8:495-505.
- [46]Wang YP, Liu F, He HW, Han YX, Peng ZG, Li BW, You XF, Song DQ, Li ZR, Yu LY, Cen S, Hong B, Sun CH, Zhao LX, Kreiswirth B, Perlin D, Shao RG, Jiang JD: Heat stress cognate 70 host protein as a potential drug target against drug resistance in hepatitis B virus. Antimicrob Agents Chemother 2010, 54:2070-2077.
- [47]Yang X, Haurigot V, Zhou S, Luo G, Couto LB: Inhibition of hepatitis C virus replication using adeno-associated virus vector delivery of an exogenous anti-hepatitis C virus microRNA cluster. Hepatology 2010, 52:1877-1887.
- [48]Shin D, Lee H, Kim SI, Yoon Y, Kim M: Optimization of linear double-stranded RNA for the production of multiple siRNAs targeting hepatitis C virus. RNA 2009, 15:898-910.
- [49]Liu YP, von Eije KJ, Schopman NC, Westerink JT, Brake OT, Haasnoot J, Berkhout B: Combinatorial RNAi Against HIV-1 Using Extended Short Hairpin RNAs. Mol Ther 2009, 17:1712-1723.
- [50]Chen WZ, Yan WY, Du QY, Fei L, Liu MQ, Ni Z, Ni Z, Sheng ZT, Zheng ZX: RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice. J Virol 2004, 78:6900-6907.
- [51]Liu MQ, Chen WZ, Ni Z, Yan WY, Fei L, Jiao Y, Zhang J, Du QY, Wei XF, Chen JL, Liu YM, Zheng ZX: Cross-inhibition to heterologous footand-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology 2005, 336:51-59.
- [52]Chen WZ, Liu MQ, Jiao Y, Yan WY, Wei XF, Chen JL, Fei L, Liu Y, Zuo XP, Yang FG, Lu YG, Zheng ZX: Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006, 80:3559-3566.
- [53]Liu M, Ding H, Zhao P, Qin ZL, Gao J, Cao MM, Luan J, Wu WB, Qi ZT: RNA interference effectively inhibits mRNA accumulation and protein expression of Hepatitis C Virus Core and E2 Genes inhuman cells. Biosci Biotechnol Biochem 2006, 70:2049-2055.
- [54]Xue Q, Ding H, Liu M, Zhao P, Gao J, Ren H, Liu Y, Qi ZT: Inhibition of hepatitis C virus replication and expression by small interfering RNA targeting host cellular genes. Arch Virol 2006, 152:955-962.
- [55]Ding H, Liu Y, Bian ZQ, Wu WB, Zhao P, Qin ZL, Feitelson MA, Qi ZT: Stably silencing of CD81 expression by small interfering RNAs targeting 3′-NTR inhibits HCV infection. Hep Mon 2008, 8:267-274.
- [56]Cao MM, Ren H, Pan X, Pan W, Qi ZT: Inhibition of EGFP expression by siRNA in EGFP-stably expressing Huh-7 cells. J Virol Methods 2004, 119:189-194.
- [57]Bian ZQ, Liu S, Liu MQ, Xiao A, Jiao Y, Yan WY, Zheng ZX: PreC/C gene-targeting RNA interference suppresses hepatitis B virus replication and expression in human hepatoma. Zhong hua Yi Xue Za Zhi 2012, 92:768-772.
- [58]Zhu YZ, Cao MM, Wang WB, Wang W, Ren H, Zhao P, Qi ZT: Association of heat shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J General Virol 2012, 93:61-71.
- [59]Li WH, Miao XH, Qi ZT, Zeng WT, Liang JX, Liang ZW: Hepatitis B virus X protein upregulates HSP90alpha expression via activation of c-Myc in human hepatocarcinoma cell line, HepG2. Virol J 2010, 7:45-55.
- [60]Ely A, Naidoo T, Arbuthnot P: Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res 2009, 37(e91):1-10.
- [61]Holmgren R, Livak K, Morimoto R, Freund R, Meselson M: Studies of cloned sequences from four Drosophila heat shock loci. Cell 1979, 18:1359-1370.
- [62]DeFeel MR, Qin ZQ, Dai L, Isaacs JS, Parsons CH: Interactions between Hsp90 and oncogenic viruses: implications for viral cancer therapeutics. Am J Cancer Res 2011, 1:763-772.
- [63]Mayer MP: Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2005, 153:1-46.
- [64]Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, Romero P, éndez E, López S, Arias CF: Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 2002, 76:4096-4102.
- [65]Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y: 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol 1998, 72:535-541.
- [66]Triantafilou K, Fradelizi D, Wilson K, Triantafilou M: GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 2002, 76:633-643.
- [67]Reyes-del VJ, Chávez-Salinas S, Medina F, del Angel RM: Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 2005, 79:4557-4567.
- [68]Sullivan CS, Pipas JM: The virus-chaperone connection. Virology 2001, 287:1-8.
- [69]Wang YP, Zhao W, Xue R, Zhou ZX, Liu F, Han YX, Ren G, Peng ZG, Cen S, Chen HS, Li YH, Jiang JD: Oxymatrine inhibits hepatitis B infection with an advantage of overcoming drug-resistance. Antiviral Res 2011, 89:227-231.
- [70]Peng ZG, Fan B, Du NN, Wang YP, Gao LM, Li YH, Liu F, You XF, Han YX, Zhao ZY, Cen S, Li JR, Song DQ, Jiang JD: Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA. Hepatology 2010, 52:845-853.
- [71]Bian ZQ, Hua ZL, Yan WY, Liu MQ, Zheng ZX: Identification of hepatitis B virus genotypes in patients with chronic hepatitis B from different nationalities in ethnic minority areas in Yunnan Province, China. Zhonghua Yi Xue Za Zhi 2006, 86:681-686.
- [72]Sells MA, Chen ML, Acs G: Production of hepatitis B virus particles in HepG2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 1987, 84:1005-1009.