期刊论文详细信息
Radiation Oncology
DART-bid (Dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily)–a novel approach for non-resected NSCLC: final results of a prospective study, correlating radiation dose to tumor volume
Felix Sedlmayer3  Michael Studnicka1  Birgit Wegleitner1  Peter Porsch1  Bernd Lamprecht1  Franz Zehentmayr3  Peter Kopp3  Karin Dagn3  Heinz Deutschmann3  Karl Wurstbauer2 
[1] Department of Pneumology, Paracelsus Medical University, Salzburg, Austria;Universitätsklinik für Radiotherapie, Müllner Hauptstrasse 48, Salzburg, A-5020, Austria;Department of Radiation Oncology and radART-Institute for research and development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria
关键词: DART-bid;    Accelerated repopulation;    Treatment time;    Combined modality;    Prospective clinical trials;    Target splitting;    Conformal radiotherapy;    Accelerated radiotherapy;    Non-small cell lung cancer;    Lung cancer;   
Others  :  1154482
DOI  :  10.1186/1748-717X-8-49
 received in 2012-12-08, accepted in 2013-02-25,  发布年份 2013
PDF
【 摘 要 】

Background

Sequential chemo-radiotherapies with intensive radiation components deliver promising results in non-resected non-small cell lung cancer (NSCLC). In general, radiation doses are determined by dose constraints for normal tissues, not by features relevant for tumor control. DART-bid targets directly the doses required for tumor control, correlating doses to tumor volume in a differentiated mode.

Materials/Methods

Radiation doses to primary tumors were aligned along increasing tumor size within 4 groups (<2.5 cm/2.5–4.5 cm/4.5–6.0 cm/>6.0 cm; mean number of three perpendicular diameters). ICRU-doses of 73.8 Gy/79.2 Gy/84.6 Gy/90.0 Gy, respectively, were applied. Macroscopically involved nodes were treated with a median dose of 59.4 Gy, nodal sites about 6 cm cranial to involved nodes electively with 45 Gy. Fractional doses were 1.8 Gy twice daily (bid).

2 cycles chemotherapy were given before radiotherapy.

Between 2004 and 2009, 160 not selected patients with 164 histologically/cytologically proven NSCLC were enrolled; Stage I: 38 patients; II: 6 pts.; IIIA: 69 pts.; IIIB: 47 pts. Weight loss >5%/3 months: 38 patients (24%).

Primary endpoints are local and regional tumor control rates at 2 years (as >90% of locoregional failures occur within 2 years). Secondary endpoints are survival and toxicity. With a minimum follow-up time of 2 years for patients alive, the final results are presented.

Results

32 local and 10 regional recurrences occurred. The local and regional tumor control rates at 2 years are 77% and 93%, respectively.

The median overall survival (OS) time is 28.0 months, the 2- and 5-year OS rates are 57% and 19%, respectively. For stage III patients, median OS amounts to 24.3 months, 2- /5-year OS rates to 51% and 18%, respectively.

2 treatment-related deaths (progressive pulmonary fibrosis) occurred in patients with pre-existing pulmonary fibrosis. Further acute and late toxicity was mild.

Conclusions

This novel approach yields a high level of locoregional tumor control and survival times. In general it is well tolerated. In all outcome parameters it seems to compare favourably with simultaneous chemo-radiotherapies, at present considered ‘state of the art’; and is additionally amenable for an unselected patient population.

【 授权许可】

   
2013 Wurstbauer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407104705709.pdf 902KB PDF download
Figure 2. 105KB Image download
Figure 1. 105KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Curran WJ, Paulus R, Langer C, Komaki R, Lee JS, Hauser S, Movsas B, Wasserman T, Rosenthal SA, Gore E, Machtay M, Sause W, Cox JD: Sequential vs. concurrent chemoradiation for stage III non-small lung cancer: Randomized phase III trial RTOG 9410. J Natl Cancer Inst 2011, 103:1452-1460.
  • [2]Cox JD: Are the results of RTOG 0617 mysterious? Int J Radiat Oncol Biol Phys 2012, 82:1042-1044.
  • [3]Kong FM, Randall K, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M, Lopez C, Kalemkerian GP, Hayman JA: High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small cell lung cancer: Long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 2005, 63:324-333.
  • [4]Fowler J: Biological factors influencing optimum fractionation in radiation therapy. Acta oncol 2001, 40:712-717.
  • [5]Mauguen A, Le Péchoux C, Saunders M, Schild S, Turrisi A, Baumann M, Sause W, Ball D, Belanie C, Bonner J, Zajusz A, Dahlberg S, Nankivell M, Mandrekar S, Paulus R, Behrendt K, Koch R, Bishop J, Dische S, Arriagada R, De Ruysscher D, Pignon JP: Hyperfractionated or accelerated radiotherapy in lung cancer: An individual patient data meta-anlysis. J Clin Oncol 2012, 30:2788-2797.
  • [6]Bradley J, Graham M, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B: Toxicity and outcome results of RTOG 9311: A phase I–II dose escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005, 61:318-328.
  • [7]Van Baardwijk A, Wanders S, Boersma L, Borger J, Öllers M, Dingemans A, Bootsma G, Geraedts W, Pitz C, Lunde R, Lambin B, De Ruysscher D: Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I–III non-small cell lung cancer. J Clin Oncol 2010, 28:1380-1386.
  • [8]Wurstbauer K, Deutschmann H, Kranzinger M, Merz F, Rahim H, Sedlmayer F, Kogelnik HD: Radiotherapy for lung cancer: Target splitting by asymmetric collimation enables reduction of radiation doses to normal tissues and dose escalation. Int J Radiat Oncol Biol Phys 1999, 44:333-341.
  • [9]Wurstbauer K, Deutschmann H, Kopp P, Merz F, Schöller H, Sedlmayer F: Target splitting in radiation therapy for lung cancer: further developments and exemplary treatment plans. Radiat Oncol 2009, 4:30. BioMed Central Full Text
  • [10]Wurstbauer K, Deutschmann H, Kopp P, Sedlmayer F: Radiotherapy planning for lung cancer: Slow CTs allow the drawing of tighter margins. Radiother Oncol 2005, 75:165-170.
  • [11]Guckenberger M: Evidence for the use of modern irradiation techniques for non-small cell lung cancer: unnecessary, inadequate, insufficient or too late? Strahlenther Onkol 2012, 188:287-288.
  • [12]Wurstbauer K, Weise H, Deutschmann H, Kopp P, Merz F, Studnicka M, Nairz O, Sedlmayer F: Non-small cell lung cancer in stages I–IIIB: Long-term results of definitive radiotherapy with doses >80 Gy in standard fractionation. Strahlenther Onkol 2010, 186:551-557.
  • [13]Wurstbauer K, Deutschmann H, Kopp P, Kranzinger M, Merz F, Nairz O, Studnicka M, Sedlmayer F: Nonresected non-small cell lung cancer in stages I through IIIB: Accelerated, twice daily, high-dose radiotherapy-a prospective phase I/II trial with long-term follow-up. Int J Radiat Oncol Biol Phys 2010, 77:1345-1351.
  • [14]Deutschmann H, Steininger P, Nairz O, Kopp P, Merz F, Wurstbauer K, Zehentmayr F, Fastner G, Kranzinger M, Kametriser G, Kopp M, Sedlmayer F: Augmented reality’ in conventional simulation by projection of 3-D structures into 2-D images. Strahlenther Onkol 2008, 184:93-99.
  • [15]Wurstbauer K, Merz F, Sedlmayer F: Prophylactic administration of Amphotericine B to prevent esophagitis in thoracic radiotherapy-a prospective study. Strahlenther Onkol 2009, 185:512-516.
  • [16]De Ruysscher D, Van Meerbeck J, Vandecasteele K, Oberije C, Pijls M, Dingemans AM, Reymen B, Van Baardwijk A, Wanders R, Lammering G, Lambin P, De Neve W: Radiation-induced esophagitis in lung cancer patients: Is susceptibility for neutropenia a risk factor? Strahlenther Onkol 2012, 188:564-567.
  • [17]Song C, Pyo H, Kim J, Lim YK, Kim WC, Kim HJ, Kim DW, Cho KH: Superiority of conventional intensity-modulated radiotherapy over helical tomotherapy in locally advanced non-small lung cancer. Strahlenther Onkol 2012, 188:901-909.
  • [18]Govaert S, Troost E, Schuurbiers O, Geus-Oei L, Termeer A, Span P, Bussink J: Treatment outcome and toxicity of intensity-modulated (chemo)radiotherapy in stage III non-small cell lung cancer patients. Radiat Oncol 2012, 7:150. BioMed Central Full Text
  • [19]Wang D, Sun J, Zhu J, Li X, Zhen Y, Sui S: Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy. Radiat Oncol 2012, 7:69. BioMed Central Full Text
  • [20]Furuse K, Fukuoka M, Kawahara M, Nishikawa H, Takada Y, Kudoh S, Katagami N, Ariyosh Y: Phase III study of concurrent versus sequential thoracic radiation therapy in combination with mitomycin, vindesine, and cisplatin in unresectable Stage III non-small cell lung cancer. J Clin Oncol 1999, 17:2692-2699.
  • [21]Fournel P, Robinet G, Thomas P, Souquet PJ, Lèna H, Vergnenégre A, Delhoume JY, Le Treut J, Silvani JA, Dansin E, Bozonnat MC, Daurés JP, Mornex F, Peról M: Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small cell lung cancer: Groupe Lyon-Saint Etienne d’Oncologie Thoracique-Groupe Francais de Pneumo-Cancérologie NPC 95–01 study. J Clin Oncol 2005, 23:5910-5917.
  • [22]Guckenberger M, Kavanagh A, Partridge M: Combinig advanced radiotherapy technologies to maximize safty and tumor control probability in stage III non-small cell lung cancer. Strahlenther Onkol 2012, 188:894-900.
  • [23]Machtay M, Paulus R, Moughan J, Komaki R, Bradley J, Choy H, Albain K, Movsas B, Sause W, Curran W: Defining local-regional control and its importance in locally advanced non-small cell lung cancer. J Thorac Oncol 2012, 7:716-722.
  • [24]Rosenzweig K, Sura S, Jackson A, Yorke E: Involved-field radiation therapy for inoperable non-small cell lung cancer. J Clin Oncol 2007, 25:5557-5561.
  • [25]Stinchcombe TE, Lee CB, Moore DT, Rivera MP, Halle J, Limentani S, Rosenman JG, Socinski MA: Long-term follow-up of a phase I/II trial of dose escalating three-dimensional conformal thoracic radiation therapy with induction and concurrent Carboplatin and Paclitaxel in unresctable stage IIIA/B non-small lung cancer. J Thorac Oncol 2008, 3:1279-1285.
  • [26]Bradley JD, Bae K, Graham MV, Byhardt R, Govindan R, Fowler J, Purdy JA, Michalski JM, Gore E, Choy H: Primary analysis of the phase II component of a phase I/II intensification study using three-dimensional conformal radiation therapy and concurrent chemotherapy for patients with inoperabile non-small cell lung cancer: RTOG 0117. J Clin Oncol 2010, 28:2475-2480.
  • [27]Dillman RO, Seagren SL, Propert KJ, Guerra J, Eaton WL, Perry MC, Carey RW, Frei EF, Green MR, Engl N: A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in Stage III non-small ling cancer. New Engl J Med 1990, 323:940-945.
  • [28]Sause WT, Kolesar P, Taylor S, Johnson D, Livingston R, Komaki R, Emami B, Curran W Jr, Byhardt R, Dar AR, Turrisi A 3rd: Final results of a phase III trial in regionally advanced unresectable non-small cell lung cancer. Chest 2000, 117:358-364.
  • [29]El Sharouni SY, Kal HB, Battermann JJ: Accelerated regrowth of non-small cell lung tumours after induction chemotherapy. Br J Cancer 2003, 89:2184-2189.
  • [30]Davis A, Tannock I: Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol 2000, 1:86-93.
  • [31]Saunders MI, Dische S, Barrett A, Harvey A, Griffiths G, Palmar M: Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicenter trial. Radiother Oncol 1999, 52:137-148.
  文献评价指标  
  下载次数:33次 浏览次数:21次