| Molecular Neurodegeneration | |
| Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons | |
| Robert H Schiestl2  Marie-Francoise Chesselet3  Eliezer Masliah1  Franziska Richter3  Sheila M Fleming3  Yofre Cabeza-Arvelaiz2  | |
| [1] Department of Neurosciences, University of California, San Diego; 9500 Gilman Drive, La Jolla, CA 92093, USA;Department of Pathology and Environmental Health Sciences, The Geffen School of Medicine and School of Public Health, University of California, Los Angeles, 650 Charles E. Young Dr. S, CHS 71-295; Los Angeles, CA 90095, USA;Department of Neurology, The Geffen School of Medicine, University of California, Los Angeles, 710 Westwood plaza, Los Angeles, CA 90095, USA | |
| 关键词: diabetes; vesicle release; synaptic plasticity; Alzheimer's disease; Parkinson's disease; neuroprotection; apoptosis; α-synuclein; | |
| Others : 863998 DOI : 10.1186/1750-1326-6-83 |
|
| received in 2011-06-10, accepted in 2011-12-13, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD.
Results
The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice) by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis.
Conclusion
The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA.
【 授权许可】
2011 Cabeza-Arvelaiz et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140725074926752.pdf | 2658KB | ||
| 104KB | Image | ||
| 136KB | Image | ||
| 88KB | Image | ||
| 104KB | Image |
【 图 表 】
【 参考文献 】
- [1]Trojanowski JQ, Lee VM: Parkinson's disease and related neurodegenerative synucleinopathies linked to progressive accumulations of synuclein aggregates in brain. Parkinsonism Relat Disord 2001, 7:247-251.
- [2]Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of aging 2003, 24:197-211.
- [3]Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW: Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 2004, 55:174-179.
- [4]Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Zuchner S, Konidari I, Wang G, et al.: Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010, 74:97-109.
- [5]Song YJ, Huang Y, Halliday GM: Clinical correlates of similar pathologies in parkinsonian syndromes. Mov Disord 2011, 26:499-506.
- [6]Chesselet MF: In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp Neurol 2008, 209:22-27.
- [7]Magen I, Chesselet MF: Genetic mouse models of Parkinson's disease The state of the art. Prog Brain Res 2010, 184:53-87.
- [8]Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E: Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002, 68:568-578.
- [9]Fernagut PO, Hutson CB, Fleming SM, Tetreaut NA, Salcedo J, Masliah E, Chesselet MF: Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 2007, 61:991-1001.
- [10]Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF: Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 2008., 28
- [11]Lam HA, Wu N, Cely I, Kelly RL, Hean S, Richter F, Magen I, Cepeda C, Ackerson LC, Walwyn W, et al.: Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human alpha-synuclein. J Neurosci Res 2011, 89:1091-1102.
- [12]Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF: Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 2004, 24:9434-9440.
- [13]Fleming SM, Salcedo J, Hutson CB, Rockenstein E, Masliah E, Levine MS, Chesselet MF: Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 2006, 142:1245-1253.
- [14]Wang L, Fleming SM, Chesselet MF, Taché Y: Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. Neuroreport 2008, 19:873-876.
- [15]Watson JB, Hatami A, David H, Masliah E, Roberts K, Evans CE, Levine MS: Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 2009, 159:501-513.
- [16]Wu N, Joshi PR, Cepeda C, Masliah E, Levine MS: Alpha-synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway. J Neurosci Res 2010, 88:1764-1776.
- [17]Miller RM, Kiser GL, Kaysser-Kranich T, Casaceli C, Colla E, Lee MK, Palaniappan C, Federoff HJ: Wild-type and mutant alpha-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD. Exp Neurol 2007, 204:421-432.
- [18]Yacoubian TA, Cantuti-Castelvetri I, Bouzou B, Asteris G, McLean PJ, Hyman BT, Standaert DG: Transcriptional dysregulation in a transgenic model of Parkinson disease. Neurobiol Dis 2008, 29:515-528.
- [19]Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, Hardy J, Leverenz JB, Del Tredici K, Wszolek ZK, Litvan I: Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurology 2009, 8:1150-1157.
- [20]Kendziorski C, Irizarry RA, Chen K-S, Haag JD, Gould MN: On the utility of pooling biological samples in microarray experiments. PNAS 2005, 102:4252-4257.
- [21]Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
- [22]Becker KG, Barnes KC, Bright TJ, Wang SA: The genetic association database. Nat Genet 2004, 36:431-432.
- [23]Purkey HE, D MI, Kelly JW: Evaluating the binding selectivity of transtyhyretin amyloid fibril inhibotors in blood plasma. PNAS 2004, 98:5566-5571.
- [24]Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T: Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Aβ toxicity. PNAS 2008, 105:2681-2686.
- [25]Thomas GM, Huganir RL: MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 2004, 5:173-183.
- [26]Roux PP, Blenis J: ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004, 68:320-344.
- [27]Mattson MP: Calcium and neurodegeneration. Aging Cell 2007, 6:337-350.
- [28]Sasaki T, Kotera J, Omori K: Transcriptional activation of phosphodiesterase 7B1 by dopamine D1 receptor stimulation through the cyclic AMP/cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons. J Neurochem 2004, 89:474-483.
- [29]Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, Lanfear J, Ryan AM, Schmidt CJ, Strick CA, et al.: Immunohistochemical localization of PDE10A in the rat brain. Brain Res 2003, 985:113-126.
- [30]Wang Z-W: Regulation of Synaptic Transmission by Presynaptic CaMKII and BK channels. Mol Neurobiol 2008, 38:153-166.
- [31]Okamoto S, Krainc D, Sherman K, Lipton SA: Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. PNAS 2000, 97:7561-7566.
- [32]Yan Z, Feng J, Fienberg AA, Greengard P: D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 1999, 96:11607-11612.
- [33]Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M: Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 2001, 21:9204-9213.
- [34]Iwata A, Maruyama M, Kanazawa I, Nukina N: alpha-Synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem 2001, 276:45320-45329.
- [35]Bannon AW, Seda J, Carmouche M, Francis JM, Jarosinski MA, Douglass J: Multiple Behavioral Effects of Cocaine- and Amphetamine- Regulated Transcript (CART) Peptides in Mice: CART and CART 49-89 Differ in Potency and Activity. J Pharmacol Exp Ther 2001, 299:1021-1026.
- [36]Quintero GC, Spano D, LaHoste GJ, Harrison LM: The Ras Homolog Rhes Affects Dopamine D1 and D2 Receptor-Mediated Behavior in Mice. Neuroreport 2008, 19:1563-1566.
- [37]Sidhu A, Wersinger C, Moussa CE, Vernier P: The Role of {alpha}-Synuclein in Both Neuroprotection and Neurodegeneration. Ann N Y Acad Sci 2004, 1035:250-270.
- [38]Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E: The regulation of synaptic function by alpha-synuclein. Communicative & Integrative Biology 2010, 3:106-109.
- [39]Sudhof TC: The synaptic vesicle cycle. Annu Rev Neurosci 2004, 27:509-547.
- [40]Cisternas FA, Vincent JB, Scherer SW, Ray PN: Cloning and characterization of human CADPS and CADPS2, new members of the Ca2+-dependent activator for secretion protein family. Genomics 2003, 81:279-291.
- [41]Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH: Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010, 65:66-79.
- [42]Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S: A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 2010, 30:8083-8095.
- [43]Clayton EL, Anggono V, Smillie KJ, Chau N, Robinson PJ, Cousin MA: The Phospho-Dependent Dynamin-Syndapin Interaction Triggers Activity-Dependent Bulk Endocytosis of Synaptic Vesicles. J Neurosci 2009, 29:7706-7717.
- [44]Cheung G, Jupp OJ, Cousin MA: Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 2010, 30:8151-8161.
- [45]Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, et al.: The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics 2007, 39:168-177.
- [46]Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM: Synergistic Interactions between beta-Amyloid, Tau, and alpha-Synuclein: Acceleration of Neuropathology and Cognitive Decline. J Neurosci 2010, 30:7281-7289.
- [47]Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, et al.: Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson's disease. Eur J Neurol 2011, 18:756-765.
- [48]Shimokawa N, Haglund K, Hölter SM, Grabbe C, Kirkin V, Koibuchi N, Schultz C, Rozman J, Hoelle rD, Qiu CH, et al.: CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. Embo J 2010, 29:2421-2432.
- [49]Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE: Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005, 16:421-439.
- [50]Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE, Vaught JL: Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp Neurol 1993, 124:73-88.
- [51]Miller RM, Chen LL, Kiser GL, Giesler TL, Kaysser-Kranich TM, Palaniappan C, Federoff HJ: Temporal evolution of mouse striatal gene expression following MPTP injury. Neurobiol Aging 2005, 26:765-775.
- [52]Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E: Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 2004, 186:158-172.
- [53]Caccamo D, Currò M, Condello S, Ferlazzo N, Ientile R: Critical role of transglutaminase and other stress proteins during neurodegenerative processes. Amino Acids 2010, 38:653-658.
- [54]Di Stasi D, Vallacchi V, Campi V, Ranzani T, Daniotti M, Chiodini E, Fiorentini S, Greeve I, Prinetti A, Rivoltini L, et al.: DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int J Cancer 2005, 115:224-230.
- [55]Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, Levkau B, Nitsch RM: The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J Neurosci 2000, 20:7345-7352.
- [56]Crameri A, Biondi E, Kuehnle K, Lutjohann D, Thelen KM, Perga S, Dotti CG, Nitsch RM, Ledesma MD, Mohajeri MH: The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. Embo J 2006, 25:432-443.
- [57]Li MD, Kane JK, Matta SG, Blaner WS, Sharp BM: Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci 2000, 20:1318-1323.
- [58]Bassilana F, Mace N, Li Q, Stutzmann JM, Gross CE, Pradier L, Benavides J, Menager J, Bezard E: Unraveling substantia nigra sequential gene expression in a progressive MPTP-lesioned macaque model of Parkinson's disease. Neurobiol Dis 2005, 20:93-103.
- [59]Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ: Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J Biol Chem 2003, 278:49874-49881.
- [60]Golovko MY, Barceló-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ: The role of alpha-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 2009, 326:55-66.
- [61]Soccio RE, Breslow JL: Intracellular Cholesterol Transport. Arterioscler Thromb Vasc Biol 2004, 24:1150-1160.
- [62]Wolozin B: Apolipoprotein E Receptor LR11: Intersections Between Neurodegeneration and Cholesterol Metabolism. Arch Neurol 2004, 61:1178-1180.
- [63]Reiss AB, Siller KA, Rahman MM, Chan ESL, Ghiso J, de Leon MJ: Cholesterol in neurologic disorders of the elderly: stroke and Alzheimer's disease. Neurobiol Aging 2005, 25:977-989.
- [64]Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P: Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 2005, 132:767-776.
- [65]Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ, Palaniappan C, Federoff HJ: Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease. Neurobiol Dis 2006, 21:305-313.
- [66]Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ: Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997, 389:856-860.
- [67]Lindholm D, Castren E, Hengerer B, Zafra F, Berninger B, Thoenen H: Differential Regulation of Nerve Growth Factor (NGF) Synthesis in Neurons and Astrocytes by Glucocorticoid Hormones. Eur J Neurosci 1992, 4:404-410.
- [68]Petridis AK, El Maarouf A: Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci 2011, 18:265-270.
- [69]Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J: Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 2004, 63:1155-1166.
- [70]Geng X, Lou H, Wang J, Li L, Swanson AL, Sun M, Beers-Stolz D, Watkins SK, Perez RG, Drain P: {alpha}-Synuclein Binds the KATP Channel at Insulin Secretory Granules and Inhibits Insulin Secretion. Am J Physiol Endocrinol Metab 2011, 300:E276-286.
- [71]Adibhatla RM, Hatcher JF: Role of Lipids in Brain Injury and Diseases. Future Lipidol 2007, 4:403-422.
- [72]Schernhammer E, Hansen J, Rugbjerg K, Wermuth L, Ritz B: Diabetes and the Risk of Developing Parkinson's Disease in Denmark. Diabetes Care 2011, 34:1102-1108.
- [73]van de Bunt M, Gloyn AL: From genetic association to molecular mechanism. Curr Diab Rep 2010, 10:452-466.
- [74]Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG: Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis 2007, 26:606-614.
- [75]Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC: Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 2010, 5:e8856.
- [76]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
PDF