期刊论文详细信息
Movement Ecology
Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds
Erik P Willems3  T Jean Marie Arseneau3  Stéphanie Mercier1  Nir Sapir2  E Emiel van Loon4  Stef Sijben6  Kevin Buchin5 
[1] Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland;Department of Evolutionary and Environmental Biology, The University of Haifa, Haifa, Israel;Anthropological Institute & Museum, University of Zurich, Zurich, Switzerland;Computational Geo-Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands;Department of Mathematics and Computer Science, Technical University Eindhoven, Eindhoven, The Netherlands;Faculty of Mathematics, Ruhr-Universität Bochum, Bochum, Germany
关键词: Migratory flight behaviour;    Home range utilization;    Spatial distribution;    Movement speed;    Brownian bridge movement model;   
Others  :  1215990
DOI  :  10.1186/s40462-015-0043-8
 received in 2014-10-14, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis.

Results

We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a “contextually naïve” model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM.

Conclusions

Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.

【 授权许可】

   
2015 Buchin et al.

【 预 览 】
附件列表
Files Size Format View
20150627080335630.pdf 1302KB PDF download
Fig. 5. 43KB Image download
Fig. 4. 30KB Image download
Fig. 3. 14KB Image download
Fig. 2. 68KB Image download
Fig. 1. 31KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Anderson DJ. The home range: a new nonparametric-estimation technique. Ecology. 1982; 63:103–12. http://dx.doi.org/10.2307/1937036.
  • [2]Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies. Ecology. 1989; 70:164-8.
  • [3]Burgman MA, Fox JC. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv. 2003; 6:19–28. http://dx.doi.org/10.1017/S1367943003003044.
  • [4]Gudmundsson J, Laube P, Wolle T. Computational Movement Analysis In: Kresse W, Danko DM, editors. Springer Handbook of Geographic Information. Berlin Heidelberg: Springer: 2012. p. 423–38. http://dx.doi.org/10.1007/978-3-540-72680-7_22.
  • [5]Jonsen I, Mills Flemming J, Myers R. Robust state-space modeling of animal movement data. Ecology. 2005; 86:2874-80.
  • [6]Jonsen I, Basson M, Bestley S, Bravington M, Patterson T, Pederson M, et al. State-space models for biologgers: a methodological road map. Deep Sea Res II. 2013:34–46.
  • [7]Patterson T, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J. State-space models of individual animal movement. Trends Ecol Evol. 2008; 23:87-94.
  • [8]Bullard F. Estimating the Home Range of an Animal: A Brownian Bridge Approach. Master’s thesis: The University of North Carolina; 1999.
  • [9]Horne J, Garton E, Krone S, Lewis J. Analyzing animal movements using Brownian bridges. Ecology. 2007; 88(9):2354-63.
  • [10]Kranstauber B, Kays R, LaPoint S, Wikelski M, Safi K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J Anim Ecol. 2012; 81(4):738–746. doi:10.1111/j.1365-2656.2012.01955.x.
  • [11]Kranstauber B, Safi K, Bartumeus F. Bivariate Gaussian bridges directional factorization of diffusion in Brownian bridge models. Movement Ecol. 2014; 2:5. http://www.movementecologyjournal.com/content/2/1/5.
  • [12]Palm E, Newman S, Prosser D, Xiao X, Ze L, Batbayar N, Balachandran S, Takekawa J. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Movement Ecol. 2015; 3:3. http://www.movementecologyjournal.com/content/3/1/3.
  • [13]Van Diggelen F. GNSS Accuracy: Lies, Damn Lies and Statistics. GPS World. 2007; 18(1):26-32.
  • [14]Pozdnyakov V, Meyer T, Wang YB, Yan J. On modeling animal movements using Brownian motion with measurement error. Ecology. 2014; 95:247–53. doi:10.1890/13-0532.1.
  • [15]Benhamou S. Dynamic approach to space and habitat use based on biased random bridges. PloS one. 2011; 6:e14592.
  • [16]Buchin K, Sijben S, Arseneau TJM, Willems EP. Detecting Movement Patterns using Brownian Bridges. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM: 2012. p. 119–28. doi:10.1145/2424321.2424338.
  • [17]Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci. 1905; 105(49):2–9. http://www.pnas.org/content/105/49/19052.abstract.
  • [18]Getz WM, Saltz D. A framework for generating and analyzing movement paths on ecological landscapes. Proc Natl Acad Sci U S A. 1906; 105(49):6–71. http://www.pnas.org/content/105/49/19066.abstract.
  • [19]Halsey LG, Portugal SJ, Smith JA, Murn CP, Wilson RP. Recording raptor behavior on the wing via accelerometry. J Field Ornithol. 2009; 80(2):171–7. http://dx.doi.org/10.1111/j.1557-9263.2009.00219.x.
  • [20]Dutilleul P. Modifying the T-Test for assessing the correlation between 2 spatial processes. Biometrics. 1993; 49:305-14.
  • [21]Sapir N, Wikelski M, McCue MD, Pinshow B, Nathan R. Flight modes in migrating european bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS ONE. 2010; 5(11):e13956. http://dx.doi.org/10.1371/journal.pone.0013956.
  • [22]Sapir N, Horvitz N, Wikelski M, Avissar R, Mahrer Y, Nathan R. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. Proc R Soc B: Biological Sci. 1723; 278:3380–6.
  • [23]Bohrer G, Brandes D, Mandel JT, Bildstein KL, Miller TA, Lanzone M, et al. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol Lett. 2012; 15(2):96–103. http://dx.doi.org/10.1111/j.1461-0248.2011.01713.x.
  • [24]Duerr AE, Miller TA, Lanzone M, Brandes D, Cooper J, O’Malley K, et al. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes. PLoS ONE. 2012; 7(4):e35548. http://dx.doi.org/10.1371/journal.pone.0035548.
  • [25]Shepard ELC, Lambertucci SA, Vallmitjana D, Wilson RP. Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird. PLoS ONE. 2011; 6(11):e27375. http://dx.doi.org/10.1371/journal.pone.0027375.
  • [26]Hedenstrom A. Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. 342. 1302:353–61. http://rstb.royalsocietypublishing.org/content/342/1302/353.abstract.
  • [27]Sapir N, Horvitz N, Wikelski M, Avissar R, Nathan R. Compensation for lateral drift due to crosswind in migrating European bee-eaters. J Ornithol. 2014; 155:745-53.
  • [28]Willems EP, Hill RA. A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). J Biogeogr. 2009; 36(12):2300-2312.
  • [29]Willems EP, Barton RA, Hill RA. Remotely sensed productivity, regional home range selection, and local range use by an omnivorous primate. Behav Ecol. 2009; 20(5):985-92.
  • [30]Willems EP, Hill RA. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology. 2009; 90(2):546-55.
  • [31]Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 1979; 8:127-50.
  • [32]Shirihai H, Dovrat E, Christie D, Harris A, Cottridge D. The birds of Israel, Volume 692. Academic Press London, London; 1996.
  • [33]Pielke R, Cotton W, Walko R, Tremback C, Lyons W, Grasso L, et al. A comprehensive meteorological modeling system-RAMS. Meteorol Atmos Phys. 1992; 49:69–91. http://dx.doi.org/10.1007/BF01025401.
  • [34]Cotton WR, Pielke SRA, Walko R L, Liston GE, Tremback C J, Jiang H, et al. RAMS 2001: current status and future directions. Meteorol Atmos Phys. 2003; 82:5–29. http://dx.doi.org/10.1007/s00703-001-0584-9.
  文献评价指标  
  下载次数:54次 浏览次数:11次