期刊论文详细信息
Molecular Neurodegeneration
Resorufin analogs preferentially bind cerebrovascular amyloid: potential use as imaging ligands for cerebral amyloid angiopathy
Gregory J Zipfel4  Robert H Mach1  Wenhua Chu1  Jacob K Greenberg5  David H Kim5  Eric Milner3  Ananth K Vellimana5  Meng-liang Zhou5  Byung Hee Han2 
[1] Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA;Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA;Program in Neuroscience, Washington University Division of Biology and Biomedical Sciences, St. Louis, MO 63110, USA;Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
关键词: phenoxazines;    resorufin;    tracer;    amyloid imaging;    positron emission tomography;    amyloid beta;    diagnosis;    dementia;    Alzheimer's disease;    Cerebral amyloid angiopathy;   
Others  :  863984
DOI  :  10.1186/1750-1326-6-86
 received in 2011-10-10, accepted in 2011-12-22,  发布年份 2011
PDF
【 摘 要 】

Background

Cerebral amyloid angiopathy (CAA) is characterized by deposition of fibrillar amyloid β (Aβ) within cerebral vessels. It is commonly seen in the elderly and almost universally present in patients with Alzheimer's Disease (AD). In both patient populations, CAA is an independent risk factor for lobar hemorrhage, ischemic stroke, and dementia. To date, definitive diagnosis of CAA requires obtaining pathological tissues via brain biopsy (which is rarely clinically indicated) or at autopsy. Though amyloid tracers labeled with positron-emitting radioligands such as [11C]PIB have shown promise for non-invasive amyloid imaging in AD patients, to date they have been unable to clarify whether the observed amyloid load represents neuritic plaques versus CAA due in large part to the low resolution of PET imaging and the almost equal affinity of these tracers for both vascular and parenchymal amyloid. Therefore, the development of a precise and specific non-invasive technique for diagnosing CAA in live patients is desired.

Results

We found that the phenoxazine derivative resorufin preferentially bound cerebrovascular amyloid deposits over neuritic plaques in the aged Tg2576 transgenic mouse model of AD/CAA, whereas the congophilic amyloid dye methoxy-X34 bound both cerebrovascular amyloid deposits and neuritic plaques. Similarly, resorufin-positive staining was predominantly noted in fibrillar Aβ-laden vessels in postmortem AD brain tissues. Fluorescent labeling and multi-photon microscopy further revealed that both resorufin- and methoxy-X34-positive staining is colocalized to the vascular smooth muscle (VSMC) layer of vessel segments that have severe disruption of VSMC arrangement, a characteristic feature of CAA. Resorufin also selectively visualized vascular amyloid deposits in live Tg2576 mice when administered topically, though not systemically. Resorufin derivatives with chemical modification at the 7-OH position of resorufin also displayed a marked preferential binding affinity for CAA, but with enhanced lipid solubility that indicates their use as a non-invasive imaging tracer for CAA is feasible.

Conclusions

To our knowledge, resorufin analogs are the fist class of amyloid dye that can discriminate between cerebrovascular and neuritic forms of amyloid. This unique binding selectivity suggests that this class of dye has great potential as a CAA-specific amyloid tracer that will permit non-invasive detection and quantification of CAA in live patients.

【 授权许可】

   
2011 Han et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725074730127.pdf 1508KB PDF download
63KB Image download
93KB Image download
66KB Image download
153KB Image download
98KB Image download
【 图 表 】

【 参考文献 】
  • [1]Sisodia SS: Alzheimer's disease: perspectives for the new millennium. J Clin Invest 1999, 104:1169-1170.
  • [2]Zhang YW, Xu H: Molecular and Cellular Mechanisms for Alzheimer's Disease: Understanding APP Metabolism. Curr Mol Med 2007, 7:687-696.
  • [3]Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001, 81:741-766.
  • [4]Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, Dickson DW, Golde T, McGowan E: Abeta40 inhibits amyloid deposition in vivo. J Neurosci 2007, 27:627-633.
  • [5]McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, Jansen K, Delucia M, Lin WL, Dolios G, Wang R, Eckman CB, Dickson DW, Hutton M, Hardy J, Golde T: Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 2005, 47:191-199.
  • [6]Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM: Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 2005, 25:2803-2810.
  • [7]McCarron MO, Nicoll JA, Stewart J, Cole GM, Yang F, Ironside JW, Mann DM, Love S, Graham DI: Amyloid beta-protein length and cerebral amyloid angiopathy-related haemorrhage. Neuroreport 2000, 11:937-940.
  • [8]Domnitz SB, Robbins EM, Hoang AW, Garcia-Alloza M, Hyman BT, Rebeck GW, Greenberg SM, Bacskai BJ, Frosch MP: Progression of cerebral amyloid angiopathy in transgenic mouse models of Alzheimer disease. J Neuropathol Exp Neurol 2005, 64:588-594.
  • [9]Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K, van Duinen SG, Maat-Schieman ML, Staufenbiel M, Mathews PM, Jucker M: Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 2004, 7:954-960.
  • [10]Maia LF, Mackenzie IR, Feldman HH: Clinical phenotypes of Cerebral Amyloid Angiopathy. J Neurol Sci 2007, 257:23-30.
  • [11]Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO: Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol Aging 2004, 25:589-597. discussion 603-584
  • [12]Vinters HV: Cerebral amyloid angiopathy. A critical review. Stroke 1987, 18:311-324.
  • [13]Greenberg SM: Cerebral amyloid angiopathy and vessel dysfunction. Cerebrovasc Dis 2002, 13(Suppl 2):42-47.
  • [14]Okazaki H, Reagan TJ, Campbell RJ: Clinicopathologic studies of primary cerebral amyloid angiopathy. Mayo Clin Proc 1979, 54:22-31.
  • [15]Greenberg SM, Vonsattel JP, Stakes JW, Gruber M, Finklestein SP: The clinical spectrum of cerebral amyloid angiopathy: presentations without lobar hemorrhage. Neurology 1993, 43:2073-2079.
  • [16]Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM: Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003, 348:1215-1222.
  • [17]Itoh Y, Yamada M: Cerebral amyloid angiopathy in the elderly: the clinicopathological features, pathogenesis, and risk factors. Journal of medical and dental sciences 1997, 44:11-19.
  • [18]Mann DM, Iwatsubo T, Ihara Y, Cairns NJ, Lantos PL, Bogdanovic N, Lannfelt L, Winblad B, Maat-Schieman ML, Rossor MN: Predominant deposition of amyloid-beta 42(43) in plaques in cases of Alzheimer's disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 1996, 148:1257-1266.
  • [19]Knudsen KA, Rosand J, Karluk D, Greenberg SM: Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001, 56:537-539.
  • [20]Lee VM: Amyloid binding ligands as Alzheimer's disease therapies. Neurobiol Aging 2002, 23:1039-1042.
  • [21]Suhara T, Higuchi M, Miyoshi M: Neuroimaging in dementia: in vivo amyloid imaging. The Tohoku journal of experimental medicine 2008, 215:119-124.
  • [22]Henriksen G, Yousefi BH, Drzezga A, Wester HJ: Development and evaluation of compounds for imaging of beta-amyloid plaque by means of positron emission tomography. European journal of nuclear medicine and molecular imaging 2008, 35(Suppl 1):S75-81.
  • [23]Nordberg A: Amyloid imaging in Alzheimer's disease. Current opinion in neurology 2007, 20:398-402.
  • [24]Nordberg A: Amyloid plaque imaging in vivo: current achievement and future prospects. European journal of nuclear medicine and molecular imaging 2008, 35(Suppl 1):S46-50.
  • [25]Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004, 55:306-319.
  • [26]Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, Fox NC, Rossor MN: Amyloid load and cerebral atrophy in Alzheimer's disease: an 11C-PIB positron emission tomography study. Ann Neurol 2006, 60:145-147.
  • [27]Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajarvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO: Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 2006, 1575-1580.
  • [28]Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006, 67:446-452.
  • [29]Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Langstrom B, Nordberg A: Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006, 129:2856-2866.
  • [30]Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, Benedum TE, Kilbourn MR, Skovronsky D, Kung HF: Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 2009, 50:1887-1894.
  • [31]Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, Dannals RF, Nandi A, Brasic JR, Ye W, Hilton J, Lyketsos C, Kung HF, Joshi AD, Skovronsky DM, Pontecorvo MJ: In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 2010, 51:913-920.
  • [32]Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Reiman PEM, Zehntner SP, Skovronsky DM, Group AAS: Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011, 305:275-283.
  • [33]Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274:99-102.
  • [34]Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG: Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci 2001, 21:372-381.
  • [35]Han BH, Zhou ML, Abousaleh F, Brendza RP, Dietrich HH, Koenigsknecht-Talboo J, Cirrito JR, Milner E, Holtzman DM, Zipfel GJ: Cerebrovascular dysfunction in amyloid precursor protein transgenic mice: contribution of soluble and insoluble amyloid-beta peptide, partial restoration via gamma-secretase inhibition. J Neurosci 2008, 28:13542-13550.
  • [36]Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang GF, Debnath ML, Klunk WE: A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorganic & medicinal chemistry letters 2002, 12:295-298.
  • [37]Lebouvier T, Perruchini C, Panchal M, Potier MC, Duyckaerts C: Cholesterol in the senile plaque: often mentioned, never seen. Acta neuropathologica 2009, 117:31-34.
  • [38]Hawkes CA, McLaurin J: Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci USA 2009, 106:1261-1266.
  • [39]Prada CM, Garcia-Alloza M, Betensky RA, Zhang-Nunes SX, Greenberg SM, Bacskai BJ, Frosch MP: Antibody-mediated clearance of amyloid-beta peptide from cerebral amyloid angiopathy revealed by quantitative in vivo imaging. J Neurosci 2007, 27:1973-1980.
  • [40]Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB: Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 2005, 25:629-636.
  • [41]Schroeter S, Khan K, Barbour R, Doan M, Chen M, Guido T, Gill D, Basi G, Schenk D, Seubert P, Games D: Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J Neurosci 2008, 28:6787-6793.
  • [42]Kimberly WT, Gilson A, Rost NS, Rosand J, Viswanathan A, Smith EE, Greenberg SM: Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 2009, 72:1230-1235.
  • [43]Zipfel GJ, Han H, Ford AL, Lee JM: Cerebral Amyloid Angiopathy. Progressive Disruption of the Neurovascular Unit. Stroke 2008.
  • [44]Lin KJ, Hsu WC, Hsiao IT, Wey SP, Jin LW, Skovronsky D, Wai YY, Chang HP, Lo CW, Yao CH, Yen TC, Kung MP: Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent--a pilot study. Nuclear medicine and biology 2010, 37:497-508.
  • [45]Ly JV, Donnan GA, Villemagne VL, Zavala JA, Ma H, O'Keefe G, Gong SJ, Gunawan RM, Saunder T, Ackerman U, Tochon-Danguy H, Churilov L, Phan TG, Rowe CC: 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 2010, 74:487-493.
  • [46]Yates PA, Sirisriro R, Villemagne VL, Farquharson S, Masters CL, Rowe CC: Cerebral microhemorrhage and brain beta-amyloid in aging and Alzheimer disease. Neurology 2011, 77:48-54.
  • [47]Herzig MC, Van Nostrand WE, Jucker M: Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 2006, 16:40-54.
  • [48]van Horssen J, Otte-Holler I, David G, Maat-Schieman ML, van den Heuvel LP, Wesseling P, de Waal RM, Verbeek MM: Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta neuropathologica 2001, 102:604-614.
  • [49]Timmer NM, Schirris TJJ, Bruinsma IB, Otte-Holler I, van Kuppevelt TH, de Waal RMW, Verbeek MM: Aggregation and cytotoxic properties towards cultured cerebrovascular cells of Dutch-mutated Abeta40 (DAbeta(1-40)) are modulated by sulfate moieties of heparin. Neurosci Res 2010, 66:380-389.
  • [50]Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales K, Ashe KH, Irizarry MC, Hyman BT: Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann Neurol 2000, 47:739-747.
  • [51]Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, Debnath ML, Holt DP, Wang Y, Hyman BT: Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol 2002, 61:797-805.
  • [52]Han BH, D'Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A, Deshmukh M, Holtzman DM: BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 2000, 7:38-53.
  • [53]Ryu EK, Choe YS, Lee KH, Choi Y, Kim BT: Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging. Journal of medicinal chemistry 2006, 49:6111-6119.
  文献评价指标  
  下载次数:0次 浏览次数:7次