期刊论文详细信息
Radiation Oncology
Bilateral kidney preservation by volumetric-modulated arc therapy (RapidArc) compared to conventional radiation therapy (3D-CRT) in pancreatic and bile duct malignancies
Pascal Fenoglietto1  Norbert Aillères1  Jean-Bernard Dubois1  Carmen Llacer Moscardo1  Olivier Riou1  David Azria1  Sabine Vieillot1 
[1] Département de Cancérologie Radiothérapie et de Radiophysique, CRLC Val d'Aurelle-Paul Lamarque, Montpellier, France
关键词: pancreatic cancer;    rapidarc;    volumetric-modulated arc therapy;   
Others  :  1223868
DOI  :  10.1186/1748-717X-6-147
 received in 2011-08-05, accepted in 2011-10-31,  发布年份 2011
PDF
【 摘 要 】

Background

To compare volumetric-modulated arc therapy plans with conventional radiation therapy (3D-CRT) plans in pancreatic and bile duct cancers, especially for bilateral kidney preservation.

Methods

A dosimetric analysis was performed in 21 patients who had undergone radiotherapy for pancreatic or bile duct carcinoma at our institution. We compared 4-field 3D-CRT and 2 arcs RapidArc (RA) plans. The treatment plan was designed to deliver a dose of 50.4 Gy to the planning target volume (PTV) based on the gross disease in a 1.8 Gy daily fraction, 5 days a week. Planning objectives were 95% of the PTV receiving 95% of the prescribed dose and no more than 2% of the PTV receiving more than 107%. Dose-volume histograms (DVH) for the target volume and the organs at risk (right and left kidneys, bowel tract, liver and healthy tissue) were compared. Monitor units and delivery treatment time were also reported.

Results

All plans achieved objectives, with 95% of the PTV receiving ≥ 95% of the dose (D95% for 3D-CRT = 48.9 Gy and for RA = 48.6 Gy). RapidArc was shown to be superior to 3D-CRT in terms of organ at risk sparing except for contralateral kidney: for bowel tract, the mean dose was reduced by RA compared to 3D-CRT (16.7 vs 20.8 Gy, p = 0.0001). Similar result was observed for homolateral kidney (mean dose of 4.7 Gy for RA vs 12.6 Gy for 3D-CRT, p < 0.0001), but 3D-CRT significantly reduced controlateral kidney dose with a mean dose of 1.8 Gy vs 3.9 Gy, p < 0.0007. Compared to 3D-CRT, mean MUs for each fraction was significantly increased with RapidArc: 207 vs 589, (p < 0.0001) but the treatment time was not significantly different (2 and 2.66 minutes, p = ns).

Conclusion

RapidArc allows significant dose reduction, in particular for homolateral kidney and bowel, while maintaining target coverage. This would have a promising impact on reducing toxicities.

【 授权许可】

   
2011 Vieillot et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150905101339422.pdf 530KB PDF download
Figure 7. 101KB Image download
Figure 6. 37KB Image download
Figure 1. 25KB Image download
Figure 4. 44KB Image download
Figure 3. 43KB Image download
Figure 2. 33KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 1.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sultana A, Sultana A, Tudur Smith C, Cunningham D, Starling N, Tait D, Neoptolemos JP, Ghaneh P: Systematic review, including meta-analyses, on the management of locally advanced pancreatic cancer using radiation/combined modality therapy. Br J Cancer 2007, 96:1183-1190.
  • [2]Yip D, Karapetis C, Strickland A, Steer CB, Goldstein D: Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane Database Syst Rev 2006, 3:CD002093.
  • [3]Barhoumi M, Mornex F, Bonnetain F, Rougier P, Mariette C, Bouché O, Bosset JF, Aparicio T, Mineur L, Azzedine A, Hammel P, Butel J, Stremsdoerfer N, Maingon P, Bedenne L, Chauffert B: Locally advanced unresectable pancreatic cancer: Induction chemoradiotherapy followed by maintenance gemcitabine versus gemcitabine alone: Definitive results of the 2000-2001 FFCD/SFRO phase III trial. Cancer Radiother 2011, 15:182-191.
  • [4]Huguet F, Girard N, Guerche CS, Hennequin C, Mornex F, Azria D: Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. J Clin Oncol 2009, 27:2269-2277.
  • [5]Klautke G, Brunner TB: Radiotherapy in pancreatic cancer. Strahlenther Onkol 2008, 184:557-564.
  • [6]Brunner TB, Eccles CL: Radiotherapy and chemotherapy as therapeutic strategies in extrahepatic biliary duct carcinoma. Strahlenther Onkol 2010, 186:672-680.
  • [7]Goldstein D, Van Hazel G, Walpole E, Underhill C, Kotasek D, Michael M, Shapiro J, Davies T, Reece W, Harvey J, et al.: Gemcitabine with a specific conformal 3D 5FU radiochemotherapy technique is safe and effective in the definitive management of locally advanced pancreatic cancer. Br J Cancer 2007, 97:464-471.
  • [8]Murphy JD, Adusumilli S, Griffith KA, Ray ME, Zalupski MM, Lawrence TS, Ben-Josef E: Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2007, 68:801-808.
  • [9]Brown MW, Ning H, Arora B, Albert PS, Poggi M, Camphausen K, Citrin D: A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma. Int J Radiat Oncol Biol Phys 2006, 65:274-283.
  • [10]Landry JC, Yang GY, Ting JY, Staley CA, Torres W, Esiashvili N, Davis LW: Treatment of pancreatic cancer tumors with intensity-modulated radiation therapy (IMRT) using the volume at risk approach (VARA): employing dose-volume histogram (DVH) and normal tissue complication probability (NTCP) to evaluate small bowel toxicity. Med Dosim 2002, 27:121-129.
  • [11]Poppe MM, Narra V, Yue NJ, Zhou J, Nelson C, Jabbour SK: A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer. Med Dosim 2010.
  • [12]Van der Geld YG, van Triest B, Verbakel WF, van Sörnsen de Koste JR, Senan S, Slotman BJ, Lagerwaard FJ: Evaluation of four-dimensional computed tomography-based intensity-modulated and respiratory-gated radiotherapy techniques for pancreatic carcinoma. Int J Radiat Oncol Biol Phys 2008, 72:1215-1220.
  • [13]Ben-Josef E, Shields AF, Vaishampayan U, Vaitkevicius V, El-Rayes BF, McDermott P, Burmeister J, Bossenberger T, Philip PA: Intensity-modulated radiotherapy (IMRT) and concurrent capecitabine for pancreatic cancer. Int J Radiat Oncol Biol Phys 2004, 59:454-459.
  • [14]Yovino S, Poppe M, Jabbour S, David V, Garofalo M, Pandya N, Alexander R, Hanna N, Regine WF: Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers. Int J Radiat Oncol Biol Phys 2011, 79:158-162.
  • [15]Milano MT, Chmura SJ, Garofalo MC, Rash C, Roeske JC, Connell PP, Kwon OH, Jani AB, Heimann R: Intensity-modulated radiotherapy in treatment of pancreatic and bile duct malignancies: toxicity and clinical outcome. Int J Radiat Oncol Biol Phys 2004, 59:445-453.
  • [16]Otto K: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008, 35:310-317.
  • [17]Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T: Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008, 72:575-581.
  • [18]Cozzi L, Dinshaw KA, Shrivastava SK, Mahantshetty U, Engineer R, Deshpande DD, Jamema SV, Vanetti E, Clivio A, Nicolini G, Fogliata A: A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 2008, 89:180-191.
  • [19]Scorsetti M, Bignardi M, Clivio A, Cozzi L, Fogliata A, Lattuada P, Mancosu P, Navarria P, Nicolini G, Urso G, et al.: Volumetric modulation arc radiotherapy compared with static gantry intensity-modulated radiotherapy for malignant pleural mesothelioma tumor: a feasibility study. Int J Radiat Oncol Biol Phy 2010, 77:942-949.
  • [20]Vieillot S, Azria D, Lemanski C, Moscardo CL, Gourgou S, Dubois JB, Aillères N, Fenoglietto P: Plan comparison of volumetric-modulated arc therapy (RapidArc) and conventional intensity-modulated radiation therapy (IMRT) in anal canal cancer. Radiat Oncol 2010, 5:92. BioMed Central Full Text
  • [21]Eppinga W, Lagerwaard F, Verbakel W, Slotman B, Senan S: Volumetric modulated arc therapy for advanced pancreatic cancer. Strahlenther Onkol 2010, 186:382-387.
  • [22]Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE: Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys 2010, 76:S108-115.
  • [23]Cassady JR: Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys 1995, 31:1249-1256.
  • [24]Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21:109-122.
  • [25]Devisetty K, Mell LK, Salama JK, Schomas DA, Miller RC, Jani AB, Roeske JC, Aydogan B, Chmura SJ: A multi-institutional acute gastrointestinal toxicity analysis of anal cancer patients treated with concurrent intensity-modulated radiation therapy (IMRT) and chemotherapy. Radiother Oncol 2009, 93:298-301.
  • [26]Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, Miften M: Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys 2010, 76:S101-107.
  • [27]Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, Ten Haken RK: Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 2010, 76:S94-100.
  • [28]Dorr W, Herrmann T: Second primary tumors after radiotherapy for malignancies. Treatment-related parameters. Strahlenther Onkol 2002, 178:357-362.
  • [29]Randall ME, Ibbott GS: Intensity-modulated radiation therapy for gynecologic cancers: pitfalls, hazards, and cautions to be considered. Semin Radiat Oncol 2006, 16:138-143.
  文献评价指标  
  下载次数:0次 浏览次数:5次