期刊论文详细信息
Particle and Fibre Toxicology
Identification of genes associated with blood feeding in the cat flea, Ctenocephalides felis
R.C. Andrew Thompson2  Kim L. Rice1  Marion G. Macnish2  Wayne K. Greene2 
[1] Present address: INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d’Hématologie, Hôpital St. Louis, Paris, France;School of Veterinary and Life Sciences, Murdoch University, Perth W.A. 6150, Australia
关键词: Suppression subtractive hybridization;    cDNA;    Blood feeding;    Ctenocephalides felis;    Cat flea;   
Others  :  1222230
DOI  :  10.1186/s13071-015-0972-5
 received in 2015-05-07, accepted in 2015-06-30,  发布年份 2015
PDF
【 摘 要 】

Background

The cat flea (Ctenocephalides felis) is a blood-feeding ectoparasitic insect and particular nuisance pest of companion animals worldwide. Identification of genes that are differentially expressed in response to feeding is important for understanding flea biology and discovering targets for their control.

Methods

C. felis fleas were maintained and fed for 24 h using an artificial rearing system. The technique of suppression subtractive hybridization was employed to screen for mRNAs specifically expressed in fed fleas.

Results

We characterized nine distinct full-length flea transcripts that exhibited modulated or de novo expression during feeding. Among the predicted protein sequences were two serine proteases, a serine protease inhibitor, two mucin-like molecules, a DNA topoisomerase, an enzyme associated with GPI-mediated cell membrane attachment of proteins and a component of the insect innate immune response.

Conclusions

Our results provide a molecular insight into the physiology of flea feeding. The protein products of the genes identified may play important roles during flea feeding in terms of blood meal digestion, cellular growth/repair and protection from feeding-associated stresses.

【 授权许可】

   
2015 Greene et al.

【 预 览 】
附件列表
Files Size Format View
20150805124838376.pdf 791KB PDF download
Fig. 3. 36KB Image download
Fig. 2. 35KB Image download
Fig. 1. 26KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Blagburn BL, Dryden MW. Biology, treatment and control of flea and tick infestations. Vet Clin N Am Small Anim Pract. 2009; 39:1173-1200.
  • [2]Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D. Fleas and flea-borne diseases. Int J Infect Dis. 2010; 14(8):e667-e676.
  • [3]Lam A, Yu A. Overview of flea allergy dermatitis. Compend Contin Educ Vet. 2009; 31(5):E1-E10.
  • [4]Rust MK. Advances in the control of Ctenocephalides felis (cat flea) on cats and dogs. Trends Parasitol. 2005; 21(5):232-236.
  • [5]Gaines PJ, Sampson CM, Rushlow KE, Stiegler GL. Cloning of a family of serine protease genes from the cat flea Ctenocephalides felis. Insect Mol Biol. 1999; 8(1):11-22.
  • [6]Brandt KS, Silver GM, Becher AM, Gaines PJ, Maddux JD, Jarvis EE et al.. Isolation, characterization, and recombinant expression of multiple serpins from the cat flea, Ctenocephalides felis. Arch Insect Biochem Physiol. 2004; 55(4):200-214.
  • [7]Walmsley SJ, Gaines PJ. Identification of two cDNAs encoding synaptic vesicle protein 2 (SV2)-like proteins from epithelial tissues in the cat flea, Ctenocephalides felis. Insect Mol Biol. 2004; 13(3):225-230.
  • [8]Diatchenko L, Lukyanov S, Lau YF, Siebert PD. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol. 1999; 303:349-380.
  • [9]Wade SE, Georgi JR. Survival and reproduction of artificially fed cat fleas, Ctenocephalides felis Bouché (Siphonaptera: Pulicidae). J Med Entomol. 1988; 25(3):186-190.
  • [10]Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8:785-786.
  • [11]Dreher-Lesnick SM, Ceraul SM, Lesnick SC, Gillespie JJ, Anderson JM, Jochim RC et al.. Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection. Insect Mol Biol. 2010; 19(2):229-241.
  • [12]Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B et al.. The medaka draft genome and insights into vertebrate genome evolution. Nature. 2007; 447(7145):714-719.
  • [13]Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW et al.. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008; 452(7190):949-955.
  • [14]Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JM. Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol. 2005; 14(4):365-373.
  • [15]Jochim RC, Teixeira CR, Laughinghouse A, Mu J, Oliveira F, Gomes RB et al.. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics. 2008; 9:15. BioMed Central Full Text
  • [16]McNair CM, Billingsley PF, Nisbet AJ, Knox DP. Feeding-associated gene expression in sheep scab mites (Psoroptes ovis). Vet Res. 2010; 41(2):16.
  • [17]Miyoshi T, Tsuji N, Islam MK, Kamio T, Fujisaki K. Gene silencing of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis by RNA interference. J Vet Med Sci. 2004; 66(11):1471-1473.
  • [18]Soares TS, Soares Torquato RJ, Alves Lemos FJ, Tanaka AS. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display. Insect Biochem Mol Biol. 2013; 43(1):9-16.
  • [19]Jayachandran B, Hussain M, Asgari S. An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding. Insect Biochem Mol Biol. 2013; 43(4):398-406.
  • [20]Cruz AC, Massena FS, Migliolo L, Macedo LL, Monteiro NK, Oliveira AS et al.. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiol Biochem. 2013; 70:61-68.
  • [21]Muller HM, Catteruccia F, Vizioli J, della Torre A, Crisanti A. Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol. 1995; 81:371-385.
  • [22]Telleria EL, Pitaluga AN, Ortigão-Farias JR, de Araújo AP, Ramalho-Ortigão JM, Traub-Cseko YM. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol. 2007; 66(2):53-63.
  • [23]Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Huang X et al.. A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis. Parasitol Int. 2008; 57(4):499-505.
  • [24]Brackney DE, Isoe J, Black WC, Zamora J, Foy BD, Miesfeld RL et al.. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. J Insect Physiol. 2010; 56(7):736-744.
  • [25]Gubb D, Sanz-Parra A, Barcena L, Troxler L, Fullaondo A. Protease inhibitors and proteolytic signalling cascades in insects. Biochimie. 2010; 92(12):1749-1759.
  • [26]Imamura S, da Silva Vaz Junior I, Sugino M, Ohashi K, Onuma M. A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine. 2005;23(10):1301–11.
  • [27]Michel K, Budd A, Pinto S, Gibson TJ, Kafatos FC. Anopheles gambiae SRPN2 facilitates midgut invasion by the malaria parasite Plasmodium berghei. EMBO Rep. 2005; 6(9):891-897.
  • [28]Jittapalapong S, Kaewhom P, Pumhom P, Canales M, de la Fuente J, Stich RW. Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound Emerg Dis. 2010; 57(1–2):103-106.
  • [29]Han P, Fan J, Liu Y, Cuthbertson AG, Yan S, Qiu BL et al.. RNAi-mediated knockdown of serine protease inhibitor genes increases the mortality of Plutella xylostella challenged by destruxin A. PLoS One. 2014; 9(5): Article ID e97863
  • [30]Lehane MJ, Wu D, Lehane SM. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A. 1997; 94(21):11502-11507.
  • [31]Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics. 2008; 9:552. BioMed Central Full Text
  • [32]Stutzer C, van Zyl WA, Olivier NA, Richards S, Maritz-Olivier C. Gene expression profiling of adult female tissues in feeding Rhipicephalus microplus cattle ticks. Int J Parasitol. 2013; 43(7):541-554.
  • [33]Cázares-Raga FE, Chávez-Munguía B, González-Calixto C, Ochoa-Franco AP, Gawinowicz MA, Rodríguez MH et al.. Morphological and proteomic characterization of midgut of the malaria vector Anopheles albimanus at early time after a blood feeding. J Proteomics. 2014; 111:100-112.
  • [34]Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim MS, Blanot D et al.. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity. 2006; 24(4):463-473.
  • [35]Peters W. Peritrophic Membranes. 1st ed. Springer, Berlin; 1992.
  • [36]McKenna RV, Riding GA, Jarmey JM, Pearson RD, Willadsen P. Vaccination of cattle against the Boophilus microplus using a mucin-like membrane glycoprotein. Parasite Immunol. 1998; 20(7):325-336.
  • [37]Tellam RL, Vuocolo T, Eisemann C, Briscoe S, Riding G, Elvin C et al.. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochem Mol Biol. 2003; 33(2):239-252.
  • [38]Foy BD, Magalhaes T, Injera WE, Sutherland I, Devenport M, Thanawastien A et al.. Induction of mosquitocidal activity in mice immunized with Anopheles gambiae midgut cDNA. Infect Immun. 2003; 71(4):2032-2040.
  • [39]O'Brien LE, Soliman SS, Li X, Bilder D. Altered modes of stem cell division drive adaptive intestinal growth. Cell. 2011; 147(3):603-614.
  • [40]Okuda K, de Almeida F, Mortara RA, Krieger H, Marinotti O, Bijovsky AT. Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. J Insect Physiol. 2007; 53(12):1307-1315.
  • [41]Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry. 2008; 47(27):6991-7000.
  文献评价指标  
  下载次数:12次 浏览次数:11次