期刊论文详细信息
Molecular Neurodegeneration
Blood–brain-barriers in aging and in Alzheimer’s disease
Joana Almeida Palha1  Nuno Sousa1  João Carlos Sousa1  Fernanda Marques1 
[1] ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimaraes, Portugal
关键词: Choroid plexus;    Cerebrospinal fluid;    Blood-cerebrospinal fluid barrier;    Blood–brain barrier;    Alzheimer’s disease;    Aging;   
Others  :  862086
DOI  :  10.1186/1750-1326-8-38
 received in 2013-06-30, accepted in 2013-09-23,  发布年份 2013
PDF
【 摘 要 】

The aging process correlates with a progressive failure in the normal cellular and organ functioning; these alterations are aggravated in Alzheimer’s disease (AD). In both aging and AD there is a general decrease in the capacity of the body to eliminate toxic compounds and, simultaneously, to supply the brain with relevant growth and nutritional factors. The barriers of the brain are targets of this age related dysfunction; both the endothelial cells of the blood–brain barrier and the choroid plexus epithelial cells of the blood-cerebrospinal fluid barrier decrease their secretory capacity towards the brain and their ability to remove toxic compounds from the brain. Additionally, during normal aging and in AD, the permeability of the brain barriers increase. As such, a greater contact of the brain parenchyma with the blood content alters the highly controlled neural environment, which impacts on neural function. Of interest, the brain barriers are more than mere obstacles to the passage of molecules and cells, and therefore active players in brain homeostasis, which is still to be further recognized and investigated in the context of health and disease. Herein, we provide a review on how the brain barriers change during aging and in AD and how these processes impact on brain function.

【 授权许可】

   
2013 Marques et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725010956464.pdf 793KB PDF download
68KB Image download
75KB Image download
【 图 表 】

【 参考文献 】
  • [1]Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3:186-191.
  • [2]Selkoe DJ: Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001, 81:741-766.
  • [3]Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, Sousa N, Almeida OF: Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci 2011, 31:7840-7847.
  • [4]Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, Cesari M, Nourhashemi F: Proinflammatory Cytokines, Aging, and Age-Related Diseases. J Am Med Dir Assoc 2013, S1525-8610(13):00280-00286.
  • [5]Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis 2010, 37:13-25.
  • [6]Engelhardt B, Coisne C: Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 2011, 8:4.
  • [7]Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B: Review: leucocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 2011, 37:24-39.
  • [8]Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, et al.: The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477:90-94.
  • [9]Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH: Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 2007, 28:485-496.
  • [10]Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH: Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 2010, 31:175-188.
  • [11]Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B: Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 2013, 521:3389-3405.
  • [12]Begley DJ, Brightman MW: Structural and functional aspects of the blood–brain barrier. Prog Drug Res 2003, 61:39-78.
  • [13]Pardridge WM, Eisenberg J, Yang J: Human blood–brain barrier insulin receptor. J Neurochem 1985, 44:1771-1778.
  • [14]Zhang Y, Pardridge WM: Rapid transferrin efflux from brain to blood across the blood–brain barrier. J Neurochem 2001, 76:1597-1600.
  • [15]Zlokovic BV: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57:178-201.
  • [16]Dziegielewska KM, Ek J, Habgood MD, Saunders NR: Development of the choroid plexus. Microsc Res Tech 2001, 52:5-20.
  • [17]Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA: Transporters of the blood–brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med 2013, 34:742-752.
  • [18]Speake T, Whitwell C, Kajita H, Majid A, Brown PD: Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech 2001, 52:49-59.
  • [19]Segal MB: Transport of nutrients across the choroid plexus. Microsc Res Tech 2001, 52:38-48.
  • [20]Marques F, Sousa JC, Coppola G, Falcao AM, Rodrigues AJ, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Kinetic profile of the transcriptome changes induced in the choroid plexus by peripheral inflammation. J Cereb Blood Flow Metab 2009, 29:921-932.
  • [21]Marques F, Sousa JC, Coppola G, Geschwind DH, Sousa N, Palha JA, Correia-Neves M: The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 2009, 10:135.
  • [22]Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N: How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 2000, 223:22-38.
  • [23]Sagare AP, Bell RD, Zlokovic BV: Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2:a011452.
  • [24]Bell RD, Zlokovic BV: Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 2009, 118:103-113.
  • [25]Brown WR, Thore CR: Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 2011, 37:56-74.
  • [26]Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME: Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 2007, 27:1563-1572.
  • [27]Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68:409-427.
  • [28]Winkler EA, Bell RD, Zlokovic BV: Central nervous system pericytes in health and disease. Nat Neurosci 2011, 14:1398-1405.
  • [29]Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG: The choroid plexus in the rise, fall and repair of the brain. Bioessays 2005, 27:262-274.
  • [30]Serot JM, Bene MC, Faure GC: Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci 2003, 8:s515-s521.
  • [31]Preston JE: Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 2001, 52:31-37.
  • [32]Wen GY, Wisniewski HM, Kascsak RJ: Biondi ring tangles in the choroid plexus of Alzheimer’s disease and normal aging brains: a quantitative study. Brain Res 1999, 832:40-46.
  • [33]Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD: Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 2012, 9:3.
  • [34]May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI: Cerebrospinal fluid production is reduced in healthy aging. Neurology 1990, 40:500-503.
  • [35]Serot JM, Zmudka J, Jouanny P: A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset Alzheimer’s disease. J Alzheimers Dis 2012, 30:17-26.
  • [36]Farrall AJ, Wardlaw JM: Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging 2009, 30:337-352.
  • [37]Zlokovic BV: Clearing amyloid through the blood–brain barrier. J Neurochem 2004, 89:807-811.
  • [38]Marques F, Falcao AM, Sousa JC, Coppola G, Geschwind D, Sousa N, Correia-Neves M, Palha JA: Altered iron metabolism is part of the choroid plexus response to peripheral inflammation. Endocrinology 2009, 150:2822-2828.
  • [39]Walsh DM, Selkoe DJ: A beta oligomers - a decade of discovery. J Neurochem 2007, 101:1172-1184.
  • [40]Benilova I, Karran E, De Strooper B: The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 2012, 15:349-357.
  • [41]Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B: Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 2000, 6:718.
  • [42]Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, et al.: A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012, 122:1377-1392.
  • [43]Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE: Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol 2010, 69:1034-1043.
  • [44]van Assema DM, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BN: P-glycoprotein function at the blood–brain barrier: effects of age and gender. Mol Imaging Biol 2012, 14:771-776.
  • [45]van Assema DM, Lubberink M, Rizzu P, van Swieten JC, Schuit RC, Eriksson J, Scheltens P, Koepp M, Lammertsma AA, van Berckel BN: Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res 2012, 2:57.
  • [46]Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I: Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 2005, 25:10884-10893.
  • [47]Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD: Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 2011, 8:21.
  • [48]Ingbar SH: Pre-albumin: a thyroxinebinding protein of human plasma. Endocrinology 1958, 63:256-259.
  • [49]Dickson PW, Aldred AR, Marley PD, Bannister D, Schreiber G: Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin). Regulation of transthyretin synthesis in choroid plexus is independent from that in liver. J Biol Chem 1986, 261:3475-3478.
  • [50]Sousa JC, Cardoso I, Marques F, Saraiva MJ, Palha JA: Transthyretin and Alzheimer’s disease: where in the brain? Neurobiol Aging 2007, 28:713-718.
  • [51]Palha JA: Transthyretin as a thyroid hormone carrier: function revisited. Clin Chem Lab Med 2002, 40:1292-1300.
  • [52]Palha JA, Hays MT, Morreale de Escobar G, Episkopou V, Gottesman ME, Saraiva MJ: Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am J Physiol 1997, 272:E485-E493.
  • [53]Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS: Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem 1995, 270:866-870.
  • [54]Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M: Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 2004, 189:380-392.
  • [55]Takasaki J, Ono K, Yoshiike Y, Hirohata M, Ikeda T, Morinaga A, Takashima A, Yamada M: Vitamin A has anti-oligomerization effects on amyloid-beta in vitro. J Alzheimers Dis 2011, 27:271-280.
  • [56]Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK, et al.: Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci U S A 1994, 91:8368-8372.
  • [57]Golabek A, Marques MA, Lalowski M, Wisniewski T: Amyloid beta binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci Lett 1995, 191:79-82.
  • [58]Buxbaum J, Koziol J, Connors LH: Serum transthyretin levels in senile systemic amyloidosis: effects of age, gender and ethnicity. Amyloid 2008, 15:255-261.
  • [59]Li X, Buxbaum JN: Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer’s disease? Mol Neurodegener 2011, 6:79.
  • [60]Buxbaum JN, Ye Z, Reixach N, Friske L, Levy C, Das P, Golde T, Masliah E, Roberts AR, Bartfai T: Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A 2008, 105:2681-2686.
  • [61]Choi SH, Leight SN, Lee VM, Li T, Wong PC, Johnson JA, Saraiva MJ, Sisodia SS: Accelerated Abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci 2007, 27:7006-7010.
  • [62]Wati H, Kawarabayashi T, Matsubara E, Kasai A, Hirasawa T, Kubota T, Harigaya Y, Shoji M, Maeda S: Transthyretin accelerates vascular Abeta deposition in a mouse model of Alzheimer’s disease. Brain Pathol 2009, 19:48-57.
  • [63]Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA: Transthyretin influences spatial reference memory. Neurobiol Learn Mem 2007, 88:381-385.
  • [64]Serot JM, Christmann D, Dubost T, Couturier M: Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1997, 63:506-508.
  • [65]Ribeiro CA, Santana I, Oliveira C, Baldeiras I, Moreira J, Saraiva MJ, Cardoso I: Transthyretin decrease in plasma of MCI and AD patients: investigation of mechanisms for disease modulation. Curr Alzheimer Res 2012, 9:881-889.
  • [66]Palha JA, Moreira P, Wisniewski T, Frangione B, Saraiva MJ: Transthyretin gene in Alzheimer’s disease patients. Neurosci Lett 1996, 204:212-214.
  • [67]Calero M, Rostagno A, Matsubara E, Zlokovic B, Frangione B, Ghiso J: Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 2000, 50:305-315.
  • [68]Marques F, Sousa JC, Coppola G, Gao F, Puga R, Brentani H, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS 2011, 8:10.
  • [69]Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al.: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41:1088-1093.
  • [70]Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A, et al.: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 2010, 67:739-748.
  • [71]Silajdzic E, Minthon L, Bjorkqvist M, Hansson O: No diagnostic value of plasma clusterin in Alzheimer’s disease. PLoS ONE 2012, 7:e50237.
  • [72]Howlett DR, Hortobagyi T, Francis PT: Clusterin Associates Specifically with Abeta40 in Alzheimer’s Disease Brain Tissue. Brain Pathol 2013. 10.1111/bpa.12057
  • [73]Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J: Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood–brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci U S A 1996, 93:4229-4234.
  • [74]Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I: Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002, 8:1390-1397.
  • [75]Christensen EI, Birn H: Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002, 3:256-266.
  • [76]Orlando RA, Rader K, Authier F, Yamazaki H, Posner BI, Bergeron JJ, Farquhar MG: Megalin is an endocytic receptor for insulin. J Am Soc Nephrol 1998, 9:1759-1766.
  • [77]Carro E, Trejo JL, Gerber A, Loetscher H, Torrado J, Metzger F, Torres-Aleman I: Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol Aging 2006, 27:1250-1257.
  • [78]Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F, Candore G, Caruso C, et al.: Immune profiling of Alzheimer patients. J Neuroimmunol 2012, 242:52-59.
  • [79]Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, Ricevuti G: Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev 2011, 11:149-153.
  • [80]Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 2009, 210:3-12.
  • [81]Lee CY, Landreth GE: The role of microglia in amyloid clearance from the AD brain. J Neural Transm 2010, 117:949-960.
  • [82]Yu D, Corbett B, Yan Y, Zhang GX, Reinhart P, Cho SJ, Chin J: Early cerebrovascular inflammation in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2012, 33:2942-2947.
  • [83]Kalaria RN: Vascular factors in Alzheimer’s disease. Int Psychogeriatr 2003, 15(Suppl 1):47-52.
  • [84]Kalaria RN: Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev 2010, 68(Suppl 2):S74-S87.
  • [85]Tripathy D, Sanchez A, Yin X, Luo J, Martinez J, Grammas P: Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Front Aging Neurosci 2013, 5:19.
  • [86]Grammas P, Ovase R: Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 2001, 22:837-842.
  • [87]Grammas P, Ovase R: Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer’s disease brain. Am J Pathol 2002, 160:1583-1587.
  • [88]Grammas P, Samany PG, Thirumangalakudi L: Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: implications for disease pathogenesis. J Alzheimers Dis 2006, 9:51-58.
  • [89]Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R: Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging 2013, 34:2064-2070.
  • [90]Herber DL, Mercer M, Roth LM, Symmonds K, Maloney J, Wilson N, Freeman MJ, Morgan D, Gordon MN: Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol 2007, 2:222-231.
  • [91]Marques F, Rodrigues AJ, Sousa JC, Coppola G, Geschwind DH, Sousa N, Correia-Neves M, Palha JA: Lipocalin 2 is a choroid plexus acute-phase protein. J Cereb Blood Flow Metab 2008, 28:450-455.
  • [92]Kjeldsen L, Cowland JB, Borregaard N: Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 2000, 1482:272-283.
  • [93]Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004, 432:917-921.
  • [94]Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, et al.: An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 2002, 277:45518-45528.
  • [95]Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, et al.: Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 2010, 142:857-867.
  • [96]Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC: Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 2011, 286:4248-4256.
  • [97]Choi J, Lee HW, Suk K: Increased plasma levels of lipocalin 2 in mild cognitive impairment. J Neurol Sci 2011, 305:28-33.
  • [98]Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PG, De Deyn PP, den Boer JA, Eisel UL: Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. Faseb J 2012, 26:2811-2823.
  • [99]Ferreira AC, Pinto V, Da Mesquita S, Novais A, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F: Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci 2013, 7:122.
  • [100]Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R: Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci U S A 2011, 108:18436-18441.
  • [101]Skrzypiec AE, Shah RS, Schiavon E, Baker E, Skene N, Pawlak R, Mucha M: Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala. PLoS ONE 2013, 8:e61046.
  文献评价指标  
  下载次数:16次 浏览次数:13次