Radiation Oncology | |
Impact of MLC properties and IMRT technique in meningioma and head-and-neck treatments | |
Ute Ganswindt1  Claus Belka1  Markus Alber3  Helmut Weingandt1  Michael Reiner1  Almut Troeller2  Matthias Söhn1  Steffi Kantz1  | |
[1] Department of Radiation Oncology, Ludwig-Maximilians-University, Munich, Germany;Department of Radiation Oncology, William Beaumont Health System, Royal Oak, MI, USA;Department of Clinical Medicine, Department of Oncology, Aarhus University, Aarhus, Denmark | |
关键词: VMAT; IMRT; MLC properties; | |
Others : 1228461 DOI : 10.1186/s13014-015-0447-z |
|
received in 2015-02-23, accepted in 2015-06-25, 发布年份 2015 | |
【 摘 要 】
Purpose
The impact of multileaf collimator (MLC) design and IMRT technique on plan quality and delivery improvements for head-and-neck and meningioma patients is compared in a planning study.
Material and methods
Ten previously treated patients (5 head-and-neck, 5 meningioma) were re-planned for step-and-shoot IMRT (ssIMRT), sliding window IMRT (dMLC) and VMAT using the MLCi2 without (−) and with (+) interdigitation and the Agility-MLC attached to an Elekta 6MV linac. This results in nine plans per patient. Consistent patient individual optimization parameters are used. Plans are generated using the research tool Hyperion V2.4 (equivalent to Elekta Monaco 3.2) with hard constraints for critical structures and objectives for target structures. For VMAT plans, the improved segment shape optimization is used.
Critical structures are evaluated based on QUANTEC criteria. PTV coverage is compared by EUD, D mean , homogeneity and conformity. Additionally, MU/plan, treatment times and number of segments are evaluated.
Results
As constrained optimization is used, all plans fulfill the hard constraints. Doses to critical structures do not differ more than 1Gy between the nine generated plans for each patient. Only larynx, parotids and eyes differ up to 1.5Gy (D meanor D max ) or 7 % (volume-constraint) due to (1) increased scatter, (2) not avoiding structures when using the full range of gantry rotation and (3) improved leaf sequencing with advanced segment shape optimization for VMAT plans. EUD, D mean , homogeneity and conformity are improved using the Agility-MLC. However, PTV coverage is more affected by technique. MU increase with the use of dMLC and VMAT, while the MU are reduced by using the Agility-MLC. Fastest treatments are always achieved using Agility-MLC, especially in combination with VMAT.
Conclusion
Fastest treatments with the best PTV coverage are found for VMAT plans with Agility-MLC, achieving the same sparing of healthy tissue compared to the other combinations of ssIMRT, dMLC and VMAT with either MLCi2 −/+or Agility.
【 授权许可】
2015 Kantz et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151016081133817.pdf | 1081KB | download | |
Fig. 3. | 65KB | Image | download |
Fig. 2. | 75KB | Image | download |
Fig. 1. | 74KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Burmeister J, McDermott P. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system. Med Phys. 2004; 31(12):3187-3193.
- [2]Wu Q, Wang Z, Kirkpatrick J, Chang Z. Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra-and extracranial lesions. Radiat Oncol. 2009; 4:3. BioMed Central Full Text
- [3]Dvorak P, Georg D, Bogner J. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. Int J Radiat Oncol Biol Phys. 2005; 61(5):1572-1581.
- [4]Monk J, Perks J, Doughty D, Plowman P. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003; 57(5):1443-1449.
- [5]Topolnjak R. Influence of the linac design on intensity-modulated radiotherapy of head-and-neck plans. Phys Med Biol. 2007; 52(1):169-182.
- [6]Chae S-M, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol. 2014; 9(1):72. BioMed Central Full Text
- [7]Bortfeld T, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000; 27(11):2494-2502.
- [8]Low DA, Sohn JW, Klein EE, Markman J. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy. Med Phys. 2001; 28(5):752-756.
- [9]Ramsey C, Spencer K. Leaf position error during conformal dynamic arc and intensity modulated arc treatments. Med Phys. 2001; 28(1):67-72.
- [10]Wijesooriya K, Bartee C, Siebers J. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy. Med Phys. 2005; 32(4):932-941.
- [11]Budgell G, Mott J. Requirements for leaf position accuracy for dynamic multileaf collimation. Phys Med Biol. 2000; 45(5):1211-1227.
- [12]Vorwerk H, Wagner D, Hess C. Impact of different leaf velocities and dose rates on the number of monitor units and the dosevolume-histograms using intensity modulated radiotherapy with sliding-window technique. Radiat Oncol. 2008; 3:31. BioMed Central Full Text
- [13]Webb S. Historical perspective on IMRT. In: Intensity-Modulated Radiation Therapy—The State of the Art. Bristol, UK: Institute of Physics Publishing; 2003. p. 1–23.
- [14]Tacke MB, Nill S, Häring P, Oelfke U. 6 MV dosimetric characterization of the 160 MLC TM , the new Siemens multileaf collimator. Med Phys. 2008; 35(5):1634.
- [15]van Kesteren Z, Janssen TM, Damen E, van Vliet-Vroegindeweij C. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts. Phys Med Biol. 2012; 57(10):2943-52.
- [16]Lafond C, Chajon E, Devillers A, Louvel G, Toublanc S, Olivier M et al.. Impact of MLC leaf width on volumetric-modulated arc therapy planning for head and neck cancers. J Appl Clin Med Phys. 2013; 14(6):4074.
- [17]Cosgrove VP, Thomas MDR, Weston SJ, Thompson MG, Reyneart N, Evans CJ et al.. Physical Characterization of a New Concept Design of an Elekta Radiation Head with Integrated 160-leaf Multi-leaf Collimator. Int J Radiat Oncol Biol Phys. 2009; 75(3):S722-723.
- [18]Alber M. A Concept for the Optimization of Radiotherapy. PhD thesis. Tübingen: Fakultät für Physik der Eberhard-Karls-Universität zu Tübingen; 2000.
- [19]Alber M, Birkner M, Laub W, Nüsslin F. Hyperion: an integrated IMRT planning tool. In: Proc. XIIIth Int. Conf. onthe Use of Computers in Radiation Therapy. Springer Berlin Heidelberg, Berlin, Heidelberg; 2000.
- [20]Alber M, Reemtsen R. Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method. Optim Methods Softw. 2007; 22(3):391-411.
- [21]Alber M, Nüsslin F. An objective function for radiation treatment optimization based on local biological measures. Phys Med Biol. 1999; 444:479-493.
- [22]Alber M. Normal tissue dose-effect models in biological dose optimisation. Z Med Phys. 2008; 18(2):102-110.
- [23]Jeleń U, Söhn M, Alber M. A finite size pencil beam for IMRT dose optimization. Phys Med Biol. 2005; 50(8):1747-66.
- [24]Jeleń U, Alber M. A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol. 2007; 52(3):617-33.
- [25]Unkelbach J, Bortfeld T, Craft D, Alber M, Bangert M, Bokrantz R et al.. Optimization approaches to volumetric modulated arc therapy planning. Med Phys. 2015; 42(3):1367-77.
- [26]Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999; 26(8):1466.
- [27]Bedford JL, Thomas MDR, Smyth G. Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator. J Appl Clin Med Phys. 2013; 14(2):4136.
- [28]Budach W, Bölke E, Homey B. Severe cutaneous reaction during radiation therapy with concurrent cetuximab. N Engl J Med. 2007; 357(5):514-515.
- [29]Kantz S, Ganswindt U, Alber M, Söhn M. Impact of MLC properties and IMRT Technique in Meningeoma and Head and Neck. Int J Radiat Oncol Biol Phys. 2012; 84(3):861.
- [30]Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans: technical note. J Neurosurg. 2000; 93(3):219-222.
- [31]Guckenberger M, Richter A, Krieger T. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol. 2009; 93(2):259-65.
- [32]Mancini B, Wilkinson J. Intensity-modulated radiation therapy or volumetric-modulated arc therapy to reduce alopecia, xerostomia, and otitis after whole brain radiation therapy for brain metastases: a. J Radiat Oncol. 2013; 2:177-183.
- [33]Bertelsen A, Hansen C. Single arc volumetric modulated arc therapy of head and neck cancer. Radiother Oncol. 2010; 95(2):142-148.
- [34]Leal A, Sánchez-Doblado F, Arráns R. MLC leaf width impact on the clinical dose distribution: a Monte Carlo approach. Int J Radiat Oncol Biol Phys. 2004; 59(5):1548-1559.
- [35]Nill S, Tücking T, Münter M, Oelfke U. Intensity modulated radiation therapy with multileaf collimators of different leaf widths: a comparison of achievable dose distributions. Radiother Oncol. 2005; 75(1):106-11.
- [36]Wang S, Gong Y, Xu Q, Bai S, Lu Y, Jiang Q et al.. Impacts of multileaf collimators leaf width on intensity-modulated radiotherapy planning for nasopharyngeal carcinoma: analysis of two commercial elekta devices. Med Dosim. 2011; 36(2):153-9.
- [37]Zwicker F, Hauswald H, Nill S. New multileaf collimator with a leaf width of 5 mm improves plan quality compared to 10 mm in step-and-shoot IMRT of HNC using integrated boost procedure. Strahlentherapie und Onkol. 2010; 186(6):334-43.
- [38]Wolff D, Stieler F, Welzel G. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol. 2009; 93(2):226-233.
- [39]Stieler F, Wolff D, Schmid H, Welzel G. A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT. Radiother Oncol. 2011; 101(3):388-393.
- [40]Vanetti E, Clivio A, Nicolini G. Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol. 2009; 92:111-117.
- [41]Fogliata A, Clivio A, Nicolini G. Intensity modulation with photons for benign intracranial tumours: a planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol. 2008; 89:254-262.
- [42]Rao M, Yang W, Chen F, Sheng K, Ye J. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys. 2010; 37(3):1350-1359.
- [43]Wiezorek T, Brachwitz T, Georg D. Rotational IMRT techniques compared to fixed gantry IMRT and tomotherapy: multi-institutional planning study for head-and-neck cases. Radiat Oncol. 2011; 6(1):20. BioMed Central Full Text
- [44]Shang J, Kong W, Wang Y-Y, Ding Z, Yan G, Zhe H. VMAT planning study in rectal cancer patients. Radiat Oncol. 2014; 9(1):219. BioMed Central Full Text
- [45]Jeong Y, Lee S, Kwak J, Cho I, Yoon SM, Kim JH et al.. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and non-coplanar intensity modulated radiotherapy (IMRT) for nasal cavity and paranasal sinus cancer. Radiat Oncol. 2014; 9(1):193. BioMed Central Full Text
- [46]Verbakel W, Cuijpers J. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009; 74(1):252-259.
- [47]Peters S, Schiefer H, Plasswilm L. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse. Radiat Oncol. 2014; 9(1):153. BioMed Central Full Text