| Orphanet Journal of Rare Diseases | |
| Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics | |
| Zbigniew K Wszolek1  Christina Sundal2  Shinsuke Fujioka1  | |
| [1] Department of Neurology at Mayo Clinic, 4500 San Pablo Road Cannaday Bldg 2-E, Jacksonville, FL, 32224, USA;Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden | |
| 关键词: BEAN; TTBK2; CACNA1A; SPTBN2; SCA31; SCA30; SCA26; SCA11; SCA6; SCA5; | |
| Others : 864137 DOI : 10.1186/1750-1172-8-14 |
|
| received in 2012-05-14, accepted in 2013-01-16, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.
【 授权许可】
2013 Fujioka et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140725082221664.pdf | 304KB | ||
| 56KB | Image |
【 图 表 】
【 参考文献 】
- [1]Harding AE: Classification of the hereditary ataxias and paraplegias. Lancet 1983, 1:1151-1155.
- [2]Whaley NR, Fujioka S, Wszolek ZK: Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2011, 6:33. BioMed Central Full Text
- [3]van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, Zwarts MJ, Kremer BP: Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol 2004, 61:257-261.
- [4]Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM: Prevalence of hereditary ataxia and spastic paraplegia in southeast norway: a population-based study. Brain 2009, 132:1577-1588.
- [5]Schols L, Bauer P, Schmidt T, Schulte T, Riess O: Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004, 3:291-304.
- [6]Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H: Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 japanese patients. Am J Med Genet 2002, 114:578-583.
- [7]Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, et al.: Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in japanese and caucasian populations. Am J Hum Genet 1998, 63:1060-1066.
- [8]Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A, Takayanagi T: Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 1997, 49:1238-1243.
- [9]Matsuyama Z, Kawakami H, Maruyama H, Izumi Y, Komure O, Udaka F, Kameyama M, Nishio T, Kuroda Y, Nishimura M, Nakamura S: Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum Mol Genet 1997, 6:1283-1287.
- [10]Watanabe H, Tanaka F, Matsumoto M, Doyu M, Ando T, Mitsuma T, Sobue G: Frequency analysis of autosomal dominant cerebellar ataxias in japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet 1998, 53:13-19.
- [11]Mori M, Adachi Y, Kusumi M, Nakashima K: A genetic epidemiological study of spinocerebellar ataxias in Tottori prefecture Japan. Neuroepidemiology 2001, 20:144-149.
- [12]Kim HJ, Jeon BS, Lee WY, Chung SJ, Yong SW, Kang JH, Lee SH, Park KW, Park MY, Kim BC, et al.: SCA in korea and its regional distribution: a multicenter analysis. Parkinsonism Relat Disord 2011, 17:72-75.
- [13]Bang OY, Huh K, Lee PH, Kim HJ: Clinical and neuroradiological features of patients with spinocerebellar ataxias from korean kindreds. Arch Neurol 2003, 60:1566-1574.
- [14]van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D, et al.: Spinocerebellar ataxias in the netherlands: prevalence and age at onset variance analysis. Neurology 2002, 58:702-708.
- [15]Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ, Knoers NV, van Amstel HK, Kremer HP: Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 dutch families. Arch Neurol 2001, 58:1839-1844.
- [16]Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O: Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 1997, 42:924-932.
- [17]Schols L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, Riess O: Spinocerebellar ataxia type 6: genotype and phenotype in german kindreds. J Neurol Neurosurg Psychiatry 1998, 64:67-73.
- [18]Riess O, Schols L, Bottger H, Nolte D, Vieira-Saecker AM, Schimming C, Kreuz F, Macek M Jr, Krebsova A, Macek MS, et al.: SCA6 Is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. Hum Mol Genet 1997, 6:1289-1293.
- [19]Leggo J, Dalton A, Morrison PJ, Dodge A, Connarty M, Kotze MJ, Rubinsztein DC: Analysis of spinocerebellar ataxia types 1, 2, 3, and 6, dentatorubral-pallidoluysian atrophy, and Friedreich's ataxia genes in spinocerebellar ataxia patients in the UK. J Med Genet 1997, 34:982-985.
- [20]Basu P, Chattopadhyay B, Gangopadhaya PK, Mukherjee SC, Sinha KK, Das SK, Roychoudhury S, Majumder PP, Bhattacharyya NP: Analysis of CAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern india. Hum Genet 2000, 106:597-604.
- [21]Sinha KK, Worth PF, Jha DK, Sinha S, Stinton VJ, Davis MB, Wood NW, Sweeney MG, Bhatia KP: Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern india. J Neurol Neurosurg Psychiatry 2004, 75:448-452.
- [22]Jiang H, Tang B, Xia K, Zhou Y, Xu B, Zhao G, Li H, Shen L, Pan Q, Cai F: Spinocerebellar ataxia type 6 in mainland china: molecular and clinical features in four families. J Neurol Sci 2005, 236:25-29.
- [23]Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J: Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from chinese kindreds. Arch Neurol 2000, 57:540-544.
- [24]Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, Heckmann J, Ramesar R, Greenberg J: The hereditary adult-onset ataxias in south africa. J Neurol Sci 2003, 216:47-54.
- [25]Sura T, Eu-Ahsunthornwattana J, Youngcharoen S, Busabaratana M, Dejsuphong D, Trachoo O, Theerasasawat S, Tunteeratum A, Noparutchanodom C, Tunlayadechanont S: Frequencies of spinocerebellar ataxia subtypes in thailand: window to the population history? J Hum Genet 2009, 54:284-288.
- [26]Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F: Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 italian families. Arch Neurol 2004, 61:727-733.
- [27]Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, et al.: Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 italian families. Eur Neurol 2000, 44:31-36.
- [28]Stevanin G, Lebre AS, Mathieux C, Cancel G, Abbas N, Didierjean O, Durr A, Trottier Y, Agid Y, Brice A: Linkage disequilibrium between the spinocerebellar ataxia 3/machado-joseph disease mutation and two intragenic polymorphisms, one of which, X359Y, affects the stop codon. Am J Hum Genet 1997, 60:1548-1552.
- [29]Juvonen V, Hietala M, Kairisto V, Savontaus ML: The occurrence of dominant spinocerebellar ataxias among 251 finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand 2005, 111:154-162.
- [30]Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, Banchs I, Estivill X, Volpini V: Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The ataxia study group. Hum Genet 1999, 104:516-522.
- [31]Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, et al.: Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 2002, 59:623-629.
- [32]Vale J, Bugalho P, Silveira I, Sequeiros J, Guimaraes J, Coutinho P: Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from portugal. Eur J Neurol 2010, 17:124-128.
- [33]Basri R, Yabe I, Soma H, Sasaki H: Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in hokkaido, the northern island of japan: a study of 113 japanese families. J Hum Genet 2007, 52:848-855.
- [34]Yabe I, Sasaki H, Yamashita I, Takei A, Tashiro K: Clinical trial of acetazolamide in SCA6, with assessment using the ataxia rating scale and body stabilometry. Acta Neurol Scand 2001, 104:44-47.
- [35]Nakamura K, Yoshida K, Miyazaki D, Morita H, Ikeda S: Spinocerebellar ataxia type 6 (SCA6): clinical pilot trial with gabapentin. J Neurol Sci 2009, 278:107-111.
- [36]Takei A, Hamada S, Homma S, Hamada K, Tashiro K, Hamada T: Difference in the effects of tandospirone on ataxia in various types of spinocerebellar degeneration: an open-label study. Cerebellum 2010, 9:567-570.
- [37]Mello CC, Conte D Jr: Revealing the world of RNA interference. Nature 2004, 431:338-342.
- [38]Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004, 10:816-820.
- [39]Scholefield J, Greenberg LJ, Weinberg MS, Arbuthnot PB, Abdelgany A, Wood MJ: Design of RNAi hairpins for mutation-specific silencing of ataxin-7 and correction of a SCA7 phenotype. PLoS One 2009, 4:e7232.
- [40]Tsou WL, Soong BW, Paulson HL, Rodriguez-Lebron E: Splice isoform-specific suppression of the Cav2.1 Variant underlying spinocerebellar ataxia type 6. Neurobiol Dis 2011, 43:533-542.
- [41]Seyhan AA: RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011, 130:583-605.
- [42]Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S: Mesenchymal stem cells rescue purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010, 40:415-423.
- [43]Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, Zhang J, Steindler DA, Zheng T: Cellular fusion for gene delivery to SCA1 affected purkinje neurons. Mol Cell Neurosci 2011, 47:61-70.
- [44]Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S: Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurol Res 2011, 33:913-920.
- [45]Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP: Effect of physical activity on cognitive function in older adults at risk for alzheimer disease: a randomized trial. JAMA 2008, 300:1027-1037.
- [46]Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, McAuley E, Kramer AF: Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19:1030-1039.
- [47]Dibble LE, Addison O, Papa E: The effects of exercise on balance in persons with Parkinson's disease: a systematic review across the disability spectrum. J Neurol Phys Ther 2009, 33:14-26.
- [48]Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, Gao Y, Flora A, Shaw C, Orr HT, Zoghbi HY: Exercise and genetic rescue of SCA1 via the transcriptional repressor capicua. Science 2011, 334:690-693.
- [49]Ilg W, Brotz D, Burkard S, Giese MA, Schols L, Synofzik M: Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 2010, 25:2239-2246.
- [50]Ilg W, Synofzik M, Brotz D, Burkard S, Giese MA, Schols L: Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009, 73:1823-1830.
- [51]Arpa J, Sanz-Gallego I, Medina-Baez J, Portela LV, Jardim LB, Torres-Aleman I, Saute JA: Subcutaneous insulin-like growth factor-1 treatment in spinocerebellar ataxias: an open label clinical trial. Mov Disord 2011, 26:358-359.
- [52]Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, Date H, Oyake M, Sato T, Sato A, et al.: Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 1998, 18:111-117.
- [53]Karpuj MV, Becher MW, Springer JE, Chabas D, Youssef S, Pedotti R, Mitchell D, Steinman L: Prolonged survival and decreased abnormal movements in transgenic model of huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 2002, 8:143-149.
- [54]Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM: Spinocerebellar ataxia type 5 in a family descended from the grandparents of president lincoln maps to chromosome 11. Nat Genet 1994, 8:280-284.
- [55]Stevanin G, Durr A, David G, Didierjean O, Cancel G, Rivaud S, Tourbah A, Warter JM, Agid Y, Brice A: Clinical and molecular features of spinocerebellar ataxia type 6. Neurology 1997, 49:1243-1246.
- [56]Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y: Spinocerebellar ataxia type 5: clinical and molecular genetic features of a german kindred. Neurology 2004, 62:327-329.
- [57]Stevanin G, Herman A, Brice A, Durr A: Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology 1999, 53:1355-1357.
- [58]Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, et al.: Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006, 38:184-190.
- [59]Ohara O, Ohara R, Yamakawa H, Nakajima D, Nakayama M: Characterization of a new beta-spectrin gene which is predominantly expressed in brain. Brain Res Mol Brain Res 1998, 57:181-192.
- [60]Stankewich MC, Tse WT, Peters LL, Ch'ng Y, John KM, Stabach PR, Devarajan P, Morrow JS, Lux SE: A widely expressed betaIII spectrin associated with golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A 1998, 95:14158-14163.
- [61]Lorenzo DN, Li MG, Mische SE, Armbrust KR, Ranum LP, Hays TS: Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in drosophila. J Cell Biol 2010, 189:143-158.
- [62]Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, Toraiwa J, Watanabe M, Rothstein JD, Lyndon AR, et al.: Loss of beta-III spectrin leads to purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci 2010, 30:4857-4867.
- [63]Clarkson YL, Gillespie T, Perkins EM, Lyndon AR, Jackson M: Beta-III spectrin mutation L253P associated with spinocerebellar ataxia type 5 interferes with binding to Arp1 and protein trafficking from the golgi. Hum Mol Genet 2010, 19:3634-3641.
- [64]Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH: Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, purkinje cell degeneration, and variable age of onset. Ann Neurol 1997, 42:933-950.
- [65]Kato T, Tanaka F, Yamamoto M, Yosida E, Indo T, Watanabe H, Yoshiwara T, Doyu M, Sobue G: Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/CACNA1A gene associated with different clinical phenotypes. Clin Genet 2000, 58:69-73.
- [66]Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, Durr A, Marelli C, Globas C, Linnemann C, et al.: The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011, 77:1035-1041.
- [67]Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, et al.: Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006, 66:1717-1720.
- [68]Yabe I, Sasaki H, Matsuura T, Takada A, Wakisaka A, Suzuki Y, Fukazawa T, Hamada T, Oda T, Ohnishi A, Tashiro K: SCA6 Mutation analysis in a large cohort of the japanese patients with late-onset pure cerebellar ataxia. J Neurol Sci 1998, 156:89-95.
- [69]Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, Ikeuchi T, Watanabe M, Hayashi A, Takiyama Y, et al.: Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 And are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J Hum Genet 1997, 61:336-346.
- [70]Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, Durr A, Filla A, Klockgether T, Mariotti C, et al.: Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 2008, 23:2232-2238.
- [71]Suenaga M, Kawai Y, Watanabe H, Atsuta N, Ito M, Tanaka F, Katsuno M, Fukatsu H, Naganawa S, Sobue G: Cognitive impairment in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry 2008, 79:496-499.
- [72]Khan NL, Giunti P, Sweeney MG, Scherfler C, Brien MO, Piccini P, Wood NW, Lees AJ: Parkinsonism and nigrostriatal dysfunction are associated with spinocerebellar ataxia type 6 (SCA6). Mov Disord 2005, 20:1115-1119.
- [73]van Gaalen J, Giunti P, van de Warrenburg BP: Movement disorders in spinocerebellar ataxias. Mov Disord 2011, 26:792-800.
- [74]McMurtray AM, Clark DG, Flood MK, Perlman S, Mendez MF: Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J Neuropsychiatry Clin Neurosci 2006, 18:420-422.
- [75]Brusse E, Brusse-Keizer MG, Duivenvoorden HJ, van Swieten JC: Fatigue in spinocerebellar ataxia: patient self-assessment of an early and disabling symptom. Neurology 2011, 76:953-959.
- [76]Eichler L, Bellenberg B, Hahn HK, Koster O, Schols L, Lukas C: Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. AJNR Am J Neuroradiol 2011, 32:890-897.
- [77]Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, Matsuyama Z, Mimori Y, Nakamura S: Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol 1998, 55:1348-1352.
- [78]Nagai Y, Azuma T, Funauchi M, Fujita M, Umi M, Hirano M, Matsubara T, Ueno S: Clinical and molecular genetic study in seven japanese families with spinocerebellar ataxia type 6. J Neurol Sci 1998, 157:52-59.
- [79]Soong B, Liu R, Wu L, Lu Y, Lee H: Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 2001, 58:300-304.
- [80]Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997, 15:62-69.
- [81]Mariotti C, Gellera C, Grisoli M, Mineri R, Castucci A, Di Donato S: Pathogenic effect of an intermediate-size SCA-6 allele (CAG)(19) in a homozygous patient. Neurology 2001, 57:1502-1504.
- [82]Matsuyama Z, Yanagisawa NK, Aoki Y, Black JL 3rd, Lennon VA, Mori Y, Imoto K, Inuzuka T: Polyglutamine repeats of spinocerebellar ataxia 6 impair the cell-death-preventing effect of CaV2.1 Ca2+ Channel–loss-of-function cellular model of SCA6. Neurobiol Dis 2004, 17:198-204.
- [83]Jodice C, Mantuano E, Veneziano L, Trettel F, Sabbadini G, Calandriello L, Francia A, Spadaro M, Pierelli F, Salvi F, et al.: Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 1997, 6:1973-1978.
- [84]Toru S, Murakoshi T, Ishikawa K, Saegusa H, Fujigasaki H, Uchihara T, Nagayama S, Osanai M, Mizusawa H, Tanabe T: Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 2000, 275:10893-10898.
- [85]Piedras-Renteria ES, Watase K, Harata N, Zhuchenko O, Zoghbi HY, Lee CC, Tsien RW: Increased expression of alpha 1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 2001, 21:9185-9193.
- [86]Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW: Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14–21.3. Am J Hum Genet 1999, 65:420-426.
- [87]Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, Singleton AB, Hilton DA, Holton J, Revesz T, et al.: Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 2007, 39:1434-1436.
- [88]Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hubsch T, Wullner U, Berthier E, Ollagnon-Roman E, Riess O, Forlani S, et al.: Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among french and german kindreds. J Neurol Neurosurg Psychiatry 2010, 81:1229-1232.
- [89]Xu Q, Li X, Wang J, Yi J, Lei L, Shen L, Jiang H, Xia K, Pan Q, Tang B: Spinocerebellar ataxia type 11 in the chinese Han population. Neurol Sci 2010, 31:107-109.
- [90]Edener U, Kurth I, Meiner A, Hoffmann F, Hubner CA, Bernard V, Gillessen-Kaesbach G, Zuhlke C: Missense exchanges in the TTBK2 gene mutated in SCA11. J Neurol 2009, 256:1856-1859.
- [91]Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM: Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 Adjacent to SCA6. Ann Neurol 2005, 57:349-354.
- [92]Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ: A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009, 80:408-411.
- [93]Ouyang Y, Sakoe K, Shimazaki H, Namekawa M, Ogawa T, Ando Y, Kawakami T, Kaneko J, Hasegawa Y, Yoshizawa K, et al.: 16q-Linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 2006, 247:180-186.
- [94]Hirano R, Takashima H, Okubo R, Okamoto Y, Maki Y, Ishida S, Suehara M, Hokezu Y, Arimura K: Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in south Kyushu Japan. J Hum Genet 2009, 54:377-381.
- [95]Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H: A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 2000, 54:1971-1975.
- [96]Owada K, Ishikawa K, Toru S, Ishida G, Gomyoda M, Tao O, Noguchi Y, Kitamura K, Kondo I, Noguchi E, et al.: A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology 2005, 65:629-632.
- [97]Hirano R, Takashima H, Okubo R, Tajima K, Okamoto Y, Ishida S, Tsuruta K, Arisato T, Arata H, Nakagawa M, et al.: Fine mapping of 16q-linked autosomal dominant cerebellar ataxia type III in japanese families. Neurogenetics 2004, 5:215-221.
- [98]Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T, Amino T, Owada K, Fujigasaki H, Sakamoto M, et al.: An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 Is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 2005, 77:280-296.
- [99]Amino T, Ishikawa K, Toru S, Ishiguro T, Sato N, Tsunemi T, Murata M, Kobayashi K, Inazawa J, Toda T, Mizusawa H: Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia. J Hum Genet 2007, 52:643-649.
- [100]Ohata T, Yoshida K, Sakai H, Hamanoue H, Mizuguchi T, Shimizu Y, Okano T, Takada F, Ishikawa K, Mizusawa H, et al.: A -16C>T substitution in the 5' UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in nagano. J Hum Genet 2006, 51:461-466.
- [101]Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, et al.: Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009, 85:544-557.
- [102]Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, Vighetto A, Marelli C, Wichmann HE, Illig T, et al.: Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in caucasians. Neurology 2011, 77:1853-1855.
- [103]Arpa J, Cuesta A, Cruz-Martinez A, Santiago S, Sarria J, Palau F: Clinical features and genetic analysis of a spanish family with spinocerebellar ataxia 6. Acta Neurol Scand 1999, 99:43-47.
- [104]Garcia-Planells J, Cuesta A, Vilchez JJ, Martinez F, Prieto F, Palau F: Genetics of the SCA6 gene in a large family segregating an autosomal dominant "pure" cerebellar ataxia. J Med Genet 1999, 36:148-151.
- [105]Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, Harada K, Nakamagoe K, Komatsuzaki Y, Satoh A, et al.: Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 1999, 67:86-89.
- [106]Sugawara M, Toyoshima I, Wada C, Kato K, Ishikawa K, Hirota K, Ishiguro H, Kagaya H, Hirata Y, Imota T, et al.: Pontine atrophy in spinocerebellar ataxia type 6. Eur Neurol 2000, 43:17-22.
- [107]Shimazaki H, Takiyama Y, Sakoe K, Amaike M, Nagaki H, Namekawa M, Sasaki H, Nakano I, Nishizawa M: Meiotic instability of the CAG repeats in the SCA6/CACNA1A gene in two japanese SCA6 families. J Neurol Sci 2001, 185:101-107.
- [108]Teive HA, Munhoz RP, Raskin S, Werneck LC: Spinocerebellar ataxia type 6 in brazil. Arq Neuropsiquiatr 2008, 66:691-694.
- [109]Takahashi H, Ishikawa K, Tsutsumi T, Fujigasaki H, Kawata A, Okiyama R, Fujita T, Yoshizawa K, Yamaguchi S, Tomiyasu H, et al.: A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 2004, 49:256-264.
- [110]Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, Onishi Y, Igarashi S, Tanaka H, Nakao N, Sahashi K, et al.: Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in japanese population. Ann Neurol 1997, 42:879-884.
- [111]Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM: Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 1997, 49:1247-1251.
PDF